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Bilevel Optimization in the Deep Learning Era: Methods and Appli-
cations

Lei Zhang

(ABSTRACT)

Neural networks, coupled with their associated optimization algorithms, have demonstrated

remarkable efficacy and versatility across an extensive array of tasks, encompassing image

recognition, speech recognition, object detection, sentiment analysis, and more. The inherent

strength of neural networks lies in their capability to autonomously learn intricate represen-

tations that map input data to corresponding output labels seamlessly. Nevertheless, not

all tasks can be neatly encapsulated within the confines of an end-to-end learning paradigm.

The complexity and diversity of real-world challenges necessitate innovative approaches that

extend beyond conventional formulations. This calls for the exploration of specialized ar-

chitectures and optimization strategies tailored to the unique intricacies of specific tasks,

ensuring a more nuanced and effective solution to the myriad demands of diverse applica-

tions.

The bi-level optimization problem stands out as a distinctive form of optimization, charac-

terized by the embedding or nesting of one problem within another. Its relevance persists

significantly in the current era dominated by deep learning. A notable instance of its applica-

tion in the realm of deep learning is observed in hyperparameter optimization. In the context

of neural networks, the automatic training of weights through backpropagation represents

a crucial aspect. However, certain hyperparameters, such as the learning rate (lr) and the

number of layers, must be predetermined and cannot be optimized through the conventional



chain rule employed in backpropagation. This underscores the importance of bi-level opti-

mization in addressing the intricate task of fine-tuning these hyperparameters to enhance

the overall performance of deep learning models. The domain of deep learning presents a fer-

tile ground for further exploration and discoveries in optimization. The untapped potential

for refining hyperparameters and optimizing various aspects of neural network architectures

highlights the ongoing opportunities for advancements and breakthroughs in this dynamic

field.

Within this thesis, we delve into significant bi-level optimization challenges, applying these

techniques to pertinent real-world tasks. Given that bi-level optimization entails dual layers

of optimization, we explore scenarios where neural networks are present in the upper-level,

the inner-level, or both. To be more specific, we systematically investigate four distinct

tasks: optimizing neural networks towards optimizing neural networks, optimizing attractors

towards optimizing neural networks, optimizing graph structures towards optimizing neural

network performance, and optimizing architecture towards optimizing neural networks. For

each of these tasks, we formulate the problems using the bi-level optimization approach

mathematically, introducing more efficient optimization strategies. Furthermore, we metic-

ulously evaluate the performance and efficiency of our proposed techniques. Importantly,

our methodologies and insights transcend the realm of bi-level optimization, extending their

applicability broadly to various deep learning models. The contributions made in this thesis

offer valuable perspectives and tools for advancing optimization techniques in the broader

landscape of deep learning.
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Chapter 1

Introduction

1.1 Overview

Bi-level optimization stands out as a powerful and versatile technique with broad applicabil-

ity, particularly in the dynamic landscape of deep learning. Its versatility is exemplified by

its successful application across various neural network architectures, ranging from Convolu-

tional Neural Networks (CNNs) to Graph Neural Networks (GNNs), amplifying its impact

in the field. In the realm of computer vision, CNNs bi-level optimization can be applied to

enhance the performance of CNNs by optimizing both the convolutional layers (lower level)

and hyperparameters like learning rates or dropout rates (upper level). Bi-level optimization

provides a systematic approach to fine-tune CNN architectures for specific image recognition

tasks, leading to improved accuracy and efficiency. For GNNs, bi-level optimization proves

invaluable in optimizing GNN architectures or graph structure, where the lower level involves

learning graphs or training graph convolution kernels. The adaptability and effectiveness of

bi-level optimization make it an indispensable tool in the deep learning era. Its applications

span across diverse neural network architectures and sub-fields, reinforcing its significance

in advancing the state-of-the-art in deep learning research and applications.

A traditional bi-level optimization challenge entails a nested problem structure, comprising

an upper-level objective and a lower-level objective. Denoting the upper-level objective

function as F : Rn × Rm → R and the lower-level objective function as f : Rn × Rm → R,

1



the formulation of the bilevel problem is expressed as:

min
xu∈XU ,xl∈XL

F (xu, xl),

s.t. xl ∈ arg min
xl∈XL

{f(xu, xl) : gj(xu, xl) ≤ 0, j = 1, . . . , J},

Gk(xu, xl) ≤ 0, k = 1, . . . , K,

(1.1)

where the upper level constraints are denoted by Gk : Rn×Rm → R for k = 1, . . . , K, while

the lower level constraints are represented by gj : Rn × Rm → R. Any equality constraints,

for the sake of brevity, have not been explicitly included. The sets XU ⊂ Rn and XL ⊂ Rm

in this definition may indicate additional constraints such as integrality. Unless specified

otherwise, it is commonly assumed that these sets refer to real numbers. The breadth of

applications and optimization tasks encompassed by the definition can vary significantly

based on the specific formulations of the upper-level objective function F and the lower-level

objective function f .

Solving bi-level optimization problems presents a formidable challenge owing to their nested

structures and the inherent high computational complexity, particularly in scenarios involv-

ing large neural networks. The intricacies arise from the interdependence of an upper-level

optimization problem, which encompasses variables determined by a lower-level optimiza-

tion problem. While traditional approaches have attempted to tackle this complexity, such

as employing single-level reduction techniques or formulating surrogate problems that are

ostensibly simpler to solve, these methods lack universality and may not offer a panacea

for all instances. The application of single-level reduction involves simplifying the bi-level

problem by transforming it into a single-level optimization problem. However, this strategy

is contingent upon the nature of the specific problem and may not provide an optimal or

generalizable solution across diverse scenarios. Additionally, proposing surrogate problems



that mimic the original bi-level problem but are ostensibly easier to solve represents another

avenue of approach. Nevertheless, this method faces challenges in accurately capturing the

complexity and intricacies of the original problem, and its efficacy is subject to the specific

characteristics of the problem at hand.

Despite these traditional approaches, the domain of bi-level optimization remains rife with

unresolved challenges and open questions. The scalability and adaptability of these methods

to complex scenarios involving extensive neural networks pose ongoing issues. The quest for

a comprehensive and universally applicable solution persists, as the diversity of problems and

the ever-evolving landscape of deep learning continue to unveil nuances that demand novel

and nuanced strategies. In essence, while strides have been made in mitigating the computa-

tional complexities associated with bi-level optimization through conventional methods, the

field remains a fertile ground for exploration. The need for innovative methodologies that

can holistically address the intricacies of large neural networks within the context of bi-level

optimization underscores the frontier nature of this research domain.

1.2 Outline

Within this dissertation, my emphasis is directed towards resolving four specific types of

bi-level optimization problems, wherein either F or f in Eq. (1.1) serves as the objective

of a neural network model. These encompass optimizing neural networks towards optimiz-

ing neural networks, optimizing attractors towards optimizing neural networks, optimizing

graph structures towards optimizing neural network performance, and optimizing architec-

ture towards optimizing neural networks.

In Chapter 2, we delve into a groundbreaking application of bi-level optimization employed

in CNN models, referred to as gNAS. The concept underlying the gNAS framework we



propose revolves around leveraging another neural network model to learn the distribution of

neural architectures. It is adept at addressing the following challenges. 1) Difficulty in fully

searching the neural architecture space efficiently without human heuristic space pruning.

Due to the exponentially-large space of graph-structured neural architecture, NAS is an

extremely challenging combinatorial search problem if without sufficient restriction by human

heuristics. It is challenging to design an efficient method that captures large space with

minimum prior knowledge restriction. 2) Lack of expressiveness in automatically capturing

global characteristics of good architectures. Many current NAS methods incorrectly assume

that the predetermined architectural distribution on each edge is not influenced by others

[72]. These studies normally use adjacency matrix [46, 86] or path encoding [75, 76] which can

only capture local architecture properties. Some recent methods such as RandWire [79] and

NAGO [56] explored the space of classical network science models (such as random graphs),

which are controlled by a small set of parameters that limits their expressive power in learning

complex neural architecture patterns. 3) Difficulty in considering the high variance of wiring

patterns in good architectures. The large variety of capable neural nets indicates that good

architectures vary to some extent, and may be prone to perturbations [79], which may lead

to a “good architecture by chance”. So instead of a deterministic single (sub-)optimal result,

a “good-performing” family of similar architectures may provide better robustness.

In Chapter 3, we explore a widely studied task involving GNN and bilevel optimization,

specifically, the learning of graph structures. Our proposed model addresses the challenge of

automatically learning the causal graph for traffic prediction tasks using GNNs. Despite its

significance, learning causal relationships in traffic data poses notable technical challenges:

1) Learning causal relationships on dynamic data: The dynamics of traffic data can be

viewed as the outcome of underlying causal relationships. Tracing the causes of continuous

dynamic data proves to be challenging. 2) The difficulty in simultaneously learning causal



relationships and the autoregressive model: Inferring interpretable causal relationships while

simultaneously enhancing the accuracy of the autoregressive model is a nontrivial task. 3)

Model scalability on large spatiotemporal data: The number of entity-to-entity relationships

to infer scales as O(n2) with the number of locations, presenting scalability challenges on

extensive spatiotemporal datasets.

In Chapter 4, we delve into a compelling problem within a bi-level optimization context,

where the inner problem is constrained to be an attractor or fixed point. In mathematical

terms, a fixed point is an element that remains unchanged when subjected to a function. Our

discovery reveals that by compelling a fixed point within a graph neural network, the network

can be conceptualized as having an infinite number of layers, making it particularly adept

at the graph-to-graph translation problem. The challenges include: 1) capturing long range

node and edge dependencies at the same time, and 2) consistency between node attributes

and edge attributes.

In Chapter 5, we tackle a traditional bi-level optimization challenge known as neural architec-

ture search (NAS). In this context, the upper-level problem involves variables corresponding

to the architectures of the inner neural network, while the inner-level problem pertains to

the trainable layers of the neural network. However, our approach focuses on a unique task

where the neural network takes the form of an Echo-State Network. We integrate Echo-

State Network and NAS methodologies to address the translation problem from continuous

node signals to dynamic graphs. The proposed method can jointly address the following

challenges: 1) Difficulty in jointly extracting features from node dynamics while learning the

dynamic relationships in a graph. The challenge necessitates that transformation patterns

be considered in both time and graph dimensions. Moreover, these two dimensions are not

independent, necessitating the need for a framework that can facilitate the combined evo-

lution of node and edge dynamics. 2) Absence of an effective and scalable framework for



graph dynamics encoding over a continuous long time duration with a high sampling rate.

The inference of dynamic graph topology necessitates fine-grained, long-term knowledge on

graph dynamics. Existing efforts for dynamic network embedding and representation learn-

ing are unable to efficiently manage extended time series of node attribute data. 3) Dilemma

between learnability and efficiency of models. Modeling the complex mapping between node

and edge dynamics demands models with a high capacity for learning. Compared to opti-

mizing a model fitted to specific data, optimizing a highly flexible, highly learnable model

is typically time-consuming.



Chapter 2

Bi-level Optimization in Generative

Neural Architecture Search

2.1 Introduction

The study of neural architecture search (NAS) is intended to automate the design of neural

network architectures with searching algorithms. Early NAS work used a fixed chain struc-

ture and only searched for the optimal sequence of operations along the chain [5, 98]. The

basic ingredients are normally taken from hand-designed neural networks such as Inception

[64], MobileNetV2 [58], MobileNeXT [95], and EfficientNet [66]. Based on the chain struc-

ture, a common practice is to search for architectures in a small cell and repeat the same cells

in a chain [94, 98]. Later, DARTS was proposed for learning a small directed acyclic graph

(DAG) in a cell [46], which enriches the neural network wiring topology. However, the small

cell design limits the possible wiring patterns in the whole graph, while the way the cells are

connected is also predefined. RandWire was among the first works that attempted to explore

a more diverse set of connectivity patterns in neural network architectures and showed excit-

ing results by simply wiring the basic operations randomly [79]. However, even RandWire

tried to randomly wire networks, using a random graph model such as the Watts–Strogatz

(WS) model is a strong prior knowledge, yet with limited model expressiveness in capturing

network behaviors. But the inspiration from the above works indeed indicates the prospects

7



to explore the diversity of wiring patterns, though it seems a highly under-explored domain

with open questions such as: What are the optimal ways to model the network wirings? Is

it possible to learn the wiring patterns? How do we further eliminate the priors on network

wiring and search for novel wiring patterns?

Despite the prospects to answer the above questions, it is not easy due to several unsolved

challenges: 1) Difficulty in fully searching the neural architecture space efficiently

without human heuristic space pruning. Due to the exponentially-large space of graph-

structured neural architecture, NAS is an extremely challenging combinatorial search prob-

lem if without sufficient restriction by human heuristics. It is challenging to design an

efficient method that captures large space with minimum prior knowledge restriction. 2)

Lack of expressiveness in automatically capturing global characteristics of good

architectures. Many current NAS methods incorrectly assume that the predetermined ar-

chitectural distribution on each edge is not influenced by others [72]. These studies normally

use adjacency matrix [46, 86] or path encoding [75, 76] which can only capture local archi-

tecture properties. Some recent methods such as RandWire [79] and NAGO [56] explored

the space of classical network science models (such as random graphs), which are controlled

by a small set of parameters that limits their expressive power in learning complex neural

architecture patterns. 3) Difficulty in considering the high variance of wiring pat-

terns in good architectures. The large variety of capable neural nets indicates that good

architectures vary to some extent, and may be prone to perturbations [79], which may lead

to a “good architecture by chance”. So instead of a deterministic single (sub-)optimal result,

a “good-performing” family of similar architectures may provide better robustness. A more

comprehensive related work section can be found in Appendix C.

To address the above challenges, we propose a novel generative neural architecture search

(gNAS) framework that simultaneously learns the distribution of graph-structured neural



architectures and identifies the “sweet regions” in the high-dimensional space much more

efficiently than in original graph space. To tackle challenge 1, we employ the neural DAG

representation and expand the search space to cover all possible wiring patterns. An MLP-

based generator is presented to encode the distribution of architectures to overcome challenge

2. A formal expressiveness analysis is provided to demonstrate the great expressiveness of

the generator. Lastly, the generator is designed to be stochastic in order to account for the

variances of optimal structures when solving challenge 3. A smoothness analysis proves the

feasibility of the optimization task. We conducted extensive experiments showing that gNAS

generates competitive networks and achieves state-of-the-art NAS results on four datasets.

2.2 Problem Formulation

The study of NAS mainly covers two aspects, the search space and the search algorithm.

The search space is a pool of options or hyperparameters for network architectures. Given a

pre-defined search space S, the search algorithm chooses the best combination S → s such

that s
K−→ a where K is the prior knowledge that transforms the search result into neural

network architectures, and a is an instance of network architectures.

The Problem of Generative Neural Architecture Search: Instead of searching for

a single network, here we focus on searching for the distribution of networks with “good

architectures”. We name it as the problem of generative neural architecture search (gNAS),

which maps the neural architectures into latent space for searching for good architectures.

The problem is more formally defined as follows: denote g as a mapping from a latent space

to the space of neural network architectures, then we have g : z
θ−→ a where z is a vector

following distribution p(z) and a ∈ A is a neural network architecture instance. The goal of

gNAS is to learn the optimal mapping function g (parameterized with θ) that most probably



generates good architectures.

gNAS is a new problem partially stimulated by the recent success of generative represen-

tation learning. The major problem of them is that the prescribed network models they

normally use heavily rely on strong human priors and yet with small model expressiveness.

For example, an Erdős-Rényi random graph model [36] only has two parameters, namely

the number of nodes and the average edge degree, which tend to be far from enough to

explain the complex behaviors of neural networks. Another challenge is the difficulty in

jointly handling the tasks of finding g, the search for θ, and the learning of neural networks

with candidate architectures. It is important to efficiently handle discrete values of graph-

structured neural architecture and continuous values of latent semantic space, which will

pose troubles to the gradient-based method. Additionally, there is no theoretical guarantee

that the graph generator in graph-based NAS is capable of approximating the ideal network

wiring solution, referred to as the graph generator’s expressivity. Furthermore, there is no

theoretical certainty that it is possible to optimize the graph generator’s parameters to their

ideal value.

2.3 Proposed Approach

This section outlines our proposed gNAS framework, which solves all of the issues raised

above. Fig. 2.1 illustratively summarizes the whole generative neural architecture search

process. In the gNAS framework, the search space is set to be the parameter space of a

stochastic neural DAG generator that can generate different architectures that share same

global characteristics. The results of gNAS are expected to be a class of neural network

architectures, not a single one. This is inspired by the observation that many SOTA neural

networks (e.g., EfficientNet[67], MobileNet[33], MobileNeXt[95], ResNet[31]) all have great



Figure 2.1: Overview of Generative Neural Architecture Search (gNAS). The search space is
in the parameter space rather than the embedding space. Given the random vector z ∼ pϕ(z),
the network generator can generate architectures following a certain distribution p(a). The
network generator’s weights θ are optimized based on the validation loss Lval.

performance but with totally different architectures. For more details, we start by introduc-

ing the search space that gNAS handles first.in Section 2.3.1, Tthen we formulate the gNAS

network generator g(θ) and discuss its the theoretical guarantee in Section 2.3.2. At last,

the optimization-based search stretegy is detailed in Section 2.3.3.

2.3.1 gNAS Search Space

The search space of the gNAS framework is defined as all the wiring patterns of neural

networks. We characterize neural network architectures as neural directed acyclic graphs

(DAGs), then define the parameter space of a neural DAG generator as the search space for

all the wiring patterns in the neural DAG. In traditional NAS frameworks, the search space

is directly defined as the architecture space, and NAS produces a single architecture. We

argue that the best performing designs should be a class of architectures with similar hidden

properties, as RandWire has partially demonstrated [79]. Defining the parameter space θ as

the search space enables us to discover good global wiring patterns of neural networks. The



gNAS search space is also more general than all the existing NAS space settings in terms of

the wiring patterns. In particular, in contrast to previous work that imposes various limits

on how neural networks can be wired, the gNAS search space encompasses all conceivable

wiring patterns in a n−node graph with a maximum n(n− 1)/2 edges

We assume that a deep neural network (e.g., a CNN) architecture can be defined as a neural

DAG: G = (V , E) where V = v1, ..., vn is the node set and E ∈ (vi, vj)|vi, vj ∈ V, j > i is the

set of edges. Each node vi in the neural DAG represents an operation such like convolution

or pooling. Each edge represents the forward direction of the information from one node to

another in the neural network. Without loss of generality, here in this paper we focus on

common convolutional neural network architecture (CNN). The details are as follows:

Node Operation. The nodes in the neural DAG represent operations that can be chosen

from depth-wise separable convolution, regular 3 × 3 convolution, shortcut, and so on. All

the operations maintain the same number of channels as the input data flow by default.

Merging Operation. Edge vi −→ vj is defined as a direct data flow. Before multiple data

flows arrive at the same node, the data flow will be merged. The merging stategy can be

chosen from weighted sum, attention weighted sum, and concatenation. The number of

channels remains the same after the merging.

Downsampling Downsampling refers to a reduction in the resolution of feature maps,

wherein the number of channels either remains constant or increases [46, 64]. We sepa-

rate the architectures into multiple segments (sub-graphs). The downsampling happens at

the beginning of each segment.

Representing CNN architectures as neural DAGs helps us understanding the constraints in

exiting neural network architectures and NAS search space. In DARTS, the cells are designed

to have explicitly two input nodes and one output node, where normal cells and reduction



cells are stacked in a chain. In existing work such as RandWire and NAGO, the neural DAG

is constrained to be certain types of graph that are transformed following a pre-defined rule.

None of existing work has the search space that can cover all possible neural DAGs.

2.3.2 Neural DAG Generator

Neural architecture search in the parameter space differs significantly from traditional NAS

and requires a novel formulation. We define a neural DAG network generator as gθ(z) where

z is a d−dimensional random vector and θ is the parameter of the generator. When θ is fixed

and z follows a distribution pϕ(z), we can generate a class of architectures by feeding sampled

z into the architecture generator: a = gθ(z), z ∼ pϕ(z). We assume that the parameter space

of the neural DAG generator can encode important global characteristics of the optimal

neural network architectures. The outcomes of the neural DAG generator are influenced

not just by its weights but also by the random vector, making it a stochastic generator.

Different from methods such as RandWire and NAGO, the stochastic neural DAG generator

can be optimized using a gradient-based algorithm and can approximate any neural DAG

distribution.

More specifically, we propose generative neural network to realize the stochastic neural DAG

generator and prove its effectiveness on expressing neural DAG distributions. Given vector

z and parameters θ, for a graph with maximum N nodes, the result of the neural DAG

generator is E = softmax(MLPθ(z)). E ∈ R
n(n−1)

2
×Nop where n(n−1)

2
is the maximum number

of edges in a neural DAG and Nop is the number of possible operations on an edge. When we

only consider the topology of the neural network regardless the operations, Nop can be set

to 2. In this case the operations and the graph generation are completely decoupled. The

existence of the edge i → j is determined by E(i,j) > δ where δ, normally set as 0.5, is the



threshold of keeping the edge. When Nop > 2, the neural DAG generator can also generate

the specific operations on each edge given a set of all possible operations. In this case the

operation on edge i is determined by arg max(Ei).

Given a random vector with a simplistic isotropic Gaussian prior N (0, 1), we expect that

the MLP graph generator can approximate another unknown distribution of the ideal archi-

tectures precisely. Firstly, the graph generator must have strong expressivity to cover as

many network architecture distributions as possible. Then, the optimization process must

guarantee that the graph generator converges to the optimal solution in the search space.

The convergence of the optimization is discussed in the Section 2.3.4. For the expressiveness

of the stochastic neural DAG generator, we have the following proofs.

Proposition 2.1. Our neural DAG network generator can approximate the common graph

generators including ER, BA, and WS used in existing work such as RandWire and NAGO

with asymptotical zero error.

To prove Proposition 1, we need Lemma 1 as follows:

Lemma 2.2. If a generative model can be represented as the composition of n Barron

functions, it can be approximated using a neural network with n+ 1 layers.

Lemma 2.2 provides expressively guarantee for neural networks on transforming a Gaussian

distribution to another arbitrary distribution, whereas Proposition 2.1 requires proving the

neural network’s ability on transforming a Gaussian vector to neural DAG’s distribution. A

Barron function, as described in Lemma 2.2, is a function that can be effectively approx-

imated by a neural network with a single hidden layer. The proof for Lemma 2.2 can be

found in [43], shedding light on the capacity of multilayer perceptrons (MLPs) as generative

models. Given the constraints of space, we utilize Lemma 2.2 to establish the validity of

Proposition 2.1 in Appendix. Our Proposition 2.1 can be viewed as an extension of the



classical Barron’s Theorem [7], which provides a Fourier criterion for the approximability of

a function by a neural network with a single hidden layer. We also discuss the expressively

issues with the methods that are not using a generator (e.g., DARTS [46], IDARTS [90],

MiLeNAS [30], PC-DARTS [81]) in Appendix A. To the best of our knowledge, it is the first

NAS study that gives expressiveness guarantee for search space.

2.3.3 gNAS Optimization and Training

In the gNAS framework, the generator g’s parameter θ can be seen as the hyper-parameter

of the neural network. Without loss of generality, here we consider two edge types denoted

as E(i,j) ∈ {0, 1} where 0 indicates that the edge does not exist and 1 indicates that it does.

Suppose output of the r-th node in the neural network is x(r), given input data x(0) and

labels y, the training loss of the network conditioned on the θ can be represented as:

Ltrain(x
(0), y,W, θ) = ||ŷ − y||2 where ŷ = x(n)

s.t. x(r) = o[
r∑

i=1

(E(i,r)x(i))] where E = gθ(z)
(2.1)

where o denotes the operation on the node (e.g., convolution, pooling), W denotes the weights

of the neural network, x(0) and y denote the training data (for simplicity, we omit x(0) and

y for following loss functions). The parameter to optimize in Eq 2.1 is θ. There are two

challenges with optimizing θ via the loss L. To begin, the edge set E is a discrete value

that cannot be directly optimized using gradient-based techniques. Second, differentiation

of optimization problem solutions is expensive. We present strategies based on continuous

relaxation and stochastic approximation to address these two issues.

Continuous relaxation. We use the gradient-based optimization. Let E be a set of

candidate operations (exist or not of an edge when Nop = 2, or various operations when Nop >



2). In order to render the search space continuous, we transform the categorical selection of

a specific operation into a softmax distribution encompassing all potential operations:

x(r) = o[
r∑

i=1

(
∑
e∈E

exp(E
(i,j)
e )∑

o′∈Oexp(E
(i,j)

e′ )

x(i))] (2.2)

x(r) is a weighted sum for all results of all possible edge operations. The weight for each edge

type indicates the importance of the type. In the NAS stage, we use the mixed operation as

the node operations. In the training stage, we replace the mixed operations as the selected

operations.

Stochastic approximation After the relaxation of the discrete search space, our goal is to

jointly learn the neural DAG generator model parameters θ and the CNN model parameters

W , which is a bi-level optimization problem.

min
θ

E[Lval(W
∗(θ), θ)]

s.t. E = gθ(z), z ∼ pϕ(z)

W ∗(θ) = arg min
W

Ltrain(W, θ)

(2.3)

Normally, both Ltrain and Lval are calculated as average loss across multiple mini-batches.

We replace Ltrain with L′
train which is the loss evaluated on a random mini-batch from the

training set. Similarly, We replace Lval with L′
val which is the loss evaluated on a random

mini-batch from the validation set. The optimization using mini-batch-level loss can be

considered as a stochastic approximation of the original problem. It been proven that this

approximation leads to a sufficient descent direction, which leads the bi-level optimization

converges to a stationary point [90]. The overall algorithm is given in Alg. 1. Lines 4-5

conducts stochastic approximation. The random vector z fed into the model as input (line



6) in each batch makes the neural DAG generation a stochastic process. The continuous

relaxation makes the automatic differentiation (lines 7-10) possible. Note that the gradient

methods in DARTS [46] and MiLeNAS [30] optimize the local architecture E(i,j) directly,

while we optimize the weights of the stochastic generator gθ(z) where z is a random vector.

Algorithm 1: Optimization Algorithm
1: Initialize W , θ
2: for e in epoch do
3: while not converged do
4: Sample mini-batch from the training data
5: Sample mini-batch from the validation data
6: Initialize random vector z
7: E = gθ(z)
8: Update E by descending ∇EL′val(W − ξ∇WL′train(W, θ), θ)
9: Update θ with the chain rule

10: Update W by descending ∇WL′train(W, θ)
11: Save the optimal generator weights θ
12: end while
13: end for
14: Evaluate on the searched neural network architecture.

2.3.4 Continuity Analysis

In contrast to the majority of NAS-related work, which focuses on optimizing the sole ar-

chitecture of a neural network, we want to find a distribution of good architectures. A

random vector is put into the architecture generator during the NAS process to generate

the variations. Our formulation of the NAS indicates two merits: (1) given a random vector

with Gaussian distribution, the architectures created are similar; and (2) the performance is

robust against small change of architectures.

We use the concept of Lipschitz continuity to discuss these two merits. Proving the Lipschitz

continuity guarantees that the function does not explode at some point. A smaller Lipschitz

constant means that the function is smoother and easier to optimize. While calculating the



Lipschitz constant is extremely difficult and NP-hard [61], we can prove the existence of the

upper bound, which rules out the possibility of the worst situation. To justify the first merit,

we prove the Lipschitz continuity of the graph generator in respect to its input, the random

vector in Proposition 2.3. For the second merit, we prove the Lipschitz continuity of a neural

network’s loss function in respect to its architecture in Proposition 2.4.

Proposition 2.3. Our neural DAG generator is Lipschitz continuous.

Proposition 2.4. Given the training and validation data, the loss function of the DAG-based

neural network is Lipschitz continuous with respect to the graph edges.

The detailed proof for Proposition 2.3 and Proposition 2.4 are in the Appendix A due to

the space limit. The framework illustrated in Figure 2.1 in an end-to-end optimization

problem which involves optimizing both the neural DAG generator and the CNN model. In

Proposition 2.3 we prove the continuity of the optimization from the random vector to the

neural DAG. In Proposition 2.4 we prove the continuity of the optimization from the neural

DAG to the training loss. Proposition 2.3 and 2.4 together give continuity guarantee of the

whole framework.

2.4 Experiments and Results

Experiments were conducted using four image datasets: CIFAR10, CIFAR100, Flowers102,

and ImageNet. The number of network parameters was restricted to 6.0M for ImageNet

and 4.0M for the remaining datasets. For ImageNet, due to resource limitations, we follow

the transfer learning scheme in DARTS[46] that uses the graph structure optimized on the

CIFAR10 dataset.

Search space. We did not use the graph generator to wire a whole architecture due to



Table 2.1: Test accuracy (%) and search cost (GPU days) on CIFAR-10, CIFAR-100, and
Flowers102 datasets. The top four methods are in the same RNAG∗ search space. The
bottom three methods are in the same HNAG∗ search space.

CIFAR10 CIAR100 Flowers 102
Accuracy Cost Accuracy Cost Accuracy Cost

RandWire 94.1±0.16 - 71.7±1.34 - 94.7±0.46 -
RNAG-BOHB 94.3±0.13 14.0 73.0±0.50 14.0 95.7±0.38 11.8
RNAG-MOBO 94.0±0.26 - 71.8±0.50 - 94.9±0.53 -
gNAS+RNAG∗ 94.8±0.63 2.5 74±0.70 2.5 96.2±0.49 2.5

HNAG-BOHB 96.6±0.07 12.8 79.3±0.31 12.8 97.9±0.18 10.4
HNAG-MOBO 96.6±0.15 - 77.6±0.45 - 98.1±0.19 -
gNAS+HNAG∗ 96.8±0.44 2.5 79.4±0.45 2.5 98.1±0.19 2.5

the resource constraints. While the continuous relaxation in section 2.3.3 makes automatic

differentiation possible, it requires large GPU memory especially when the graph is large.

It is known that in the DARTS-like frameworks, all the possible edges and operations are

explicitly considered within the NAS period, which results in high memory usage while the

number of nodes increases [81]. We experimented with the following two search spaces:

1) HNAG∗: HNAG∗ is the modified version of the HNAG graph generator from NAGO[56].

HNAG is a three-level, hierarchical generator. At the highest level, there is a graph composed

of cells, with each cell being depicted by a mid-level graph. Likewise, every node within a

cell forms a graph comprising fundamental operations such as conv3×3, conv5×5, and so

on. Different from HNAG where the search space is the parameters of the random graph

generators, the search space of HNAG∗ is all possible graphs with n nodes. The number

of nodes in each level is directly derived from the NAGO results. Taking CIFAR-10 as an

example, NAGO suggests a 8-top level nodes, 1 middle-level node, and 5 bottom-level nodes

graph. In this case, gNAS’s search space is all the possible graph structures in the three-

layer hierarchical graph, including 2[
8×(8−1)

2
× 5×(5−1)

2
] variants. The downsampling process for

NAGO’s HNAG search space happens at 1/3 and 2/3 nodes in the top layer of nodes. Please



note the number of nodes at each level is part of the NAS results in NAGO, so our approach

cannot completely replace NAGO.

2) RNAG∗: RNAG∗ is a more general version of RandWire’s architecture[79]. Similar

with RandWire, RNAG∗ is also an architecture with three graphs connected in sequence,

where each graph has 32 nodes. Different from RandWire, where the search space is the

parameters of the random graph generators, the search space of RNAG∗ covers all possible

graph distributions with 32 nodes. The downsampling process for the Randwire search space

happens at the beginning of each graph.

In both search space settings, we loosen most wiring pattern constrains in their vanilla

versions and utilize only the minimum human design (e.g., number of stages, number of

nodes).

NAS settings. During the NAS phase, the batch size is set to 128 and the random vector

is sampled for each batch. We train 50 epochs in total in the NAS period and use graph

generator weights that achieve the highest validation performance. 50% of the training

images are used as training set and 50% are used use the validation set.

Fully Training Configuration: Following the training of the graph generator, in the fully

training phase, five instances of the network are randomly sampled for training, utilizing

100% of the training images. For all datasets, excluding ImageNet, we assess the performance

of the generators trained on the combined training and validation sets, and then proceed to

train them to completion (600 epochs). The initial learning rate is set to 0.025, with a batch

size of 96. For ImageNet, we adhere to the complete training protocol of the small model

regime, which involves training the networks for 250 epochs. The initial learning rate is set

to 0.025, with a batch size of 256, a weight decay of 5e-5, and a momentum of 0.9. Cutout

is applied with a length of 16 for small-image tasks and a size of 112 for large-image tasks.



Table 2.2: Average performance gain in % between the NAS-searched architectures and
randomly-searched architectures.

Method CIFAR10 CIFAR100 Flowers102
DARTS 0.32 0.22 0.25
PDARTS 0.52 1.99 0.2
NSGANET -0.47 1.36 1.46
ENAS 0.01 -3.4 0.47
CNAS 0.73 -0.89 -2.48
MANAS 0.17 -0.2 0.69
StacNAS 0.42 2.86 -0.16
NAO 0.43 0.0 -0.13
NAGO+HNAG 0.94 2.85 2.93
NAGO+RNAG 0.21 1.81 1.05
gNAS+HNAG* 1.14 2.98 2.93
gNAS+RNAG* 0.74 3.2 1.58

Notably, DropPath, auxiliary towers, data augmentation, or other sophisticated training

techniques are not employed in our experiments. All experiments were conducted using

Nvidia Tesla V100 GPUs (details provided in the Appendix).

Results on Small Datasets

Table 2.1 shows the results of gNAS and comparison methods, i.e., NAGO and RandWire,

under the same search space settings on three small datasets. It can be seen that in the

RNAG∗ search space, gNAS always achieves better performance than NAGO and RandWire

for all the datasets. In the HNAG∗ search space, gNAS achieves better performance than

NAGO and RandWire for CIFAR10 and CIFAR100, achieves equal performance for Flow-

ers102. As we use the gradient-based optimization algorithm, the search time of gNAS is

much shorter than NAGO which utilizes Bayesian optimization (BO).

Table 2.2 shows the comparison of gNAS and other SOTA methods with different search space

settings. We do this comparison to demonstrate the effectiveness of the NAS methods in

their respective search space. For each NAS method, we calculate the average performance

gain in percentage with and without using NAS in their search space. For architectures



Figure 2.2 shows the visualization of the comparison. We make the following observations:
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Figure 2.2: The chart illustrates the comparison of various NAS methods, with performance
plotted on the y-axis, and random sampling results on the x-axis from their corresponding
search spaces. The centers of the ellipses, along with their edges and whisker ends, depict
the mean top-1 accuracy and standard deviation. Methods positioned along the diagonal
indicate performance equivalent to the average architecture, while those positioned above
the diagonal surpass it. All results, excluding ours (i.e., gNAS+HNAG∗, gNAS+RNAG∗),
were sourced from public repositories provided by [84] and [56].

Table 2.3: Comparison with state-of-the-art image classifiers on ImageNet

Method Top 1 acc Top 5 acc Params (M) Design Space Search method
MobileNetV2 74.7 - 6.9 - hand designed
ShuffleNetV2 74.9 92.2 7.4 - hand designed
RandWire 74.7 92.2 5.6 RNAG∗ hand designed
NASNet-A 74.0 91.6 5.3 NASNet gradient-based
Amoeba-C 75.7 92.4 6.4 NASNet evolutionary
DARTS 73.1 91.0 6.4 DARTS gradient-based
NAGO+HNAG 76.8 93.4 5.7 HNAG∗ BO
gNAS + RNAG∗ 75.1 92.3 5.9 RNAG∗ gradient-based
gNAS + HNAG∗ 76.8 93.4 5.7 HNAG∗ gradient-based

• The performance gain in the RNAG∗ search space is greater than on HNAG∗. A

reasonable explanation is that the number of nodes in the RNAG∗ search space in

larger than in the HNAG∗ search space, so adjusting the network topology plays a

more important role in determining the model’s performance.



• The performance of gNAS in both search spaces shows a relatively high variance but

the lowest performance is still decent. It means that the graph generator does learn

the knowledge on how to better wire the networks to achieve better performance.

• gNAS + HNAG∗ achieves the highest improvement margin compared with doing ran-

dom search in the same search space. It means that the good performance of the model

does not come from a deliberately designed search space, but from the NAS process

itself.

It is important to note that the best testing performance is just one way to evaluate a

NAS framework; it is not the gold standard for NAS frameworks, as testing performance is

heavily dependent on the search space and training tricks. Table 2.2 shows that some NAS

frameworks obtain negligible or even negative performance gains in their search space when

compared to randomly generated architectures. gNAS, on the other hand, gets the biggest

performance improvement when compared to randomly generated architectures in its search

space.

(a) Heat map of gNAS (b) Heat map of D-VAE

Figure 2.3: Accuracy heat map comparison between gNAS and the VAE-based method



To better illustrate the Lipschitz continuity properties of gNAS as discussed in Proposition

2.3, 2.4, and the corresponding proofs in the Appendix, we visualize the accuracy heat map

of gNAS an compare it with the VAE-based method D-VAE [91] which also has a hidden

space. For each of the two methods, we randomly sample 1000 networks and apply t-SNE

on the hidden space of z for dimensionality reduction. As shown in Fig. 2.3, we have the

following observations: 1) The points in the gNAS hidden state space is much more evenly

distributed than in the D-VAE, and 2) The loss surface of gNAS is much smoother than

D-VAE. The visualizations are consistent with our assumption: instead of doing the search

in a known unsmooth space, which most existing NAS works have, it is much easier to learn

an neural DAG generator that can generate dense good architectures.

Results on ImageNet

Table 2.3 illustrates a comparison of results on ImageNet data. With a top-1 accuracy of

75.1 percent, gNAS + RNAG∗ exceeds the best RandWire model with WS (4, 0.75). In

the HNAG∗ search space, gNAS has a mean top-1 accuracy of 76.8%, which is the same as

NAGO-HNAG. We highlight that the gNAS generator was trained on CIFAR-10 and then

transferred to ImageNet, so the generator does not overfit the ImageNet dataset. The search

cost of gNAS is substantially lower than its competitors, and the re-trained models with

generated architectures have better or comparable performance.

2.5 Discussion

Due to the high computation cost, in this study we do not search for node operations. Instead,

we only optimize the neural network topology when the operations are fixed, similar with

existing work such as NAGO [56] and RandWire [79]. As a result, even gNAS outperforms

NAGO and RandWire in their search space, gNAS does not perform better than several



other NAS methods on some datasets with different search space settings. The computation

costs and GPU memory usage of gNAS grow quadratically to the number of nodes in the

neural DAG. This is a common issue with gradient-based NAS frameworks such as DARTS

[46] and MileNAS [30]. A single NVIDIA V100 with 32GB RAM can support the training

of gNAS in both NAGO’s and RandWire’s search spaces.

We presented gNAS, a novel NAS framework that optimizes the stochastic neural DAG

generator instead of the architecture of a single network. Our hypothesis is that numerous

optimal architectures which have same global wiring characteristics exist. The neural DAG

generator is used to encode such global characteristics while the random vector makes the

generated architectures different under the same distribution. By encoding DAGs directly

with the neural DAG generator, we’re also able to generate novel architectures with the least

human bias. Our work suggests a new transition from searching for an individual network to

optimizing the parameters of a stochastic network generator, analogous to how deep learning

replaced feature engineering in machine learning.



Chapter 3

Bi-level Optimizing in Graph

Structure Learning for Traffic

Prediction

3.1 Introduction

The prediction of highway traffic has been a longstanding focus for both industry and

academia, representing a quintessential spatial-temporal data mining challenge. The devel-

opment and implementation of an Intelligent Transportation System (ITS) hinge crucially

on obtaining reliable, accurate, and consistently updated real-time traffic information. Inte-

gral subsystems of an ITS, including the Advanced Traveler Information System (ATIS) and

the Advanced Traffic Management System (ATMS), heavily rely on high-quality real-time

traffic data to furnish road users with current advisories and to enact effective traffic control

strategies. Historically, the primary objective was the collection of real-time data, but there

has been a recent shift in perspective among many agencies. They are now exploring the

potential of leveraging extensive archived datasets for ”real-time forward-looking analysis.”

With predictive data, proactive transportation management becomes a viable option. For

instance, adaptive traffic signal control proves more effective when grounded in predicted

traffic volume.

26



A general guideline for most existing traffic prediction models can be summarized by Tobler’s

First Law (TFL), which says that “Everything is related to everything else, but things that

are nearby are more related than distant things.” TFL indicates the importance of bridging

the spatial dependency and the importance of the statistical spatial correlations between

different locations. Most existing traffic prediction methods follow TFL by representing the

spatial dependency with a road network or the Euclidean distance. However, road networks

and Euclidean distances are not accurate for many real-world circumstances. For example,

two nearby traffic sensors may be positioned in two lanes of traffic moving in opposite

directions on the highway, and thus have quite a very low spatial dependency. Some other

new methods learn the correlations between locations with history data and achieve better

results. However, these methods suffer from low interpretability. A moderate correlation

between two locations could be the result of confounding variables or biased data. Inspired

by the work in causal inference in recent years[9, 41], we propose solving the traffic prediction

task by considering the Granger causal relationship among traffic sensors. Granger causality

is a classical statistical concept of causality that is based on prediction [24]. By explicitly

modeling the Granger causal relationship between the traffic sensors, the model becomes

more stable and interpretable, which is highly desirable in academia and industry. Modeling

the causal relationship in traffic prediction tasks is beyond the scope of TFL and has not

been studied yet.

Despite its importance, however, learning causal relationship in traffic data involves signif-

icant technical challenges: 1) Learning causal relationships on dynamic data. The

dynamics of traffic data can be considered as the result of the ground truth causal rela-

tionships. Tracing the causes of continuous dynamic data is difficult. 2) The difficulty

in learning causal relationships and the autoregressive model simultaneously.

Inferring interpretable causal relationships while trying to improve the accuracy of the au-



toregressive model is nontrivial. 3) Model scalability on large spatiotemporal data.

The number of entity-to-entity relationships to infer is O(n2) of the number of locations.

We present a novel Graph Neural Network (GNN)-based Spatiotemporal Causal Graph In-

ference (ST-CGI) framework to address the above challenges. This framework infers the

Granger causality graph for all locations while optimizing the autoregressive model, which

depends on the causality graph. This study’s significant contributions are as follows: 1)

the design of a novel framework for both traffic prediction and traffic causal inference; 2)

proposal for a more efficient approximation of Granger causality; 3) Extensive experiments

for both performance and interpretability.

The rest of this paper is organized as follows: Section 2 reviews the background and related

work. Section 3 introduces the preliminaries. Section 4 presents all the components of our

ST-CGI framework. The experiments on real-world data are presented in Section 5, and the

paper concludes with a summary of the research in Section 6.

3.2 Problem Formulation

We target on the spatial temporal traffic forecasting problem by following the same for-

mulation as previous work [45, 78, 92]. Consider an array of traffic series comprising

N correlated univariate time series denoted as X = X0,−, X1,−, ..., Xt,−, ..., where Xt,− =

Xt,1, Xt,2, ..., Xt,N
T ∈ RN×1 represents the traffic data from N traffic sensors at time step t.

Our objective is to predict future values of the traffic time series based on observed historical

values. We frame this challenge as identifying a function g to forecast future traffic flow at

the next step, utilizing the past S steps of historical data:



Xt+1,− = g(X[t−S:t],−) (3.1)

Definition 3.1. Granger Causality: A time series Xt,i is Granger causal of another time

series Xt,j if including the history of X−,i improves prediction of X−,j over knowing of the

history of X−,j alone. Specifically, this is quantified by comparing the prediction error

variances of the one-step linear predictor, X̂t,j, under two different models, the restricted

model and the unrestricted model. The unrestricted model gu(X[t−S:t],−)j = X̂t+1,j uses

the full histories of all the time series for prediction. The restricted model gr(X[t−S:t],−i)j =

X̂t+1,j omits the putatively causal time series from the set of predictive time series. X−,i

Granger causes X−,j if

var(|Xt+1,j − gu(X[t−S:t],−)j| | X[t−S:t],−) >

var(|Xt+1,j − gr(X[t−S:t],−i)j| | X[t−S:t],−i)

(3.2)

here var(|Xt+1,j − gu(X[t−S:t],−i)j| | X[t−S:t],−i denotes the prediction performance of model

gu given histories data on all the nodes except for node i, i.e., X[t−S:t],−i.

Granger introduced a statistical concept of causality grounded in the principles that (i)

a cause precedes its effect, and (ii) understanding a cause enhances the prediction of its

effect. However, a determination of Granger causality does not guarantee true causality.

The Granger causality tests fulfill only the Humean definition of causality, which identifies

cause-and-effect relations as those having constant conjunctions. If a common third process

drives both X and Y with different lags, one may still fail to reject the alternative hypothesis

of Granger causality. Figure (3.1) shows two cases of causal inference. In Case 1, node A is

the confounder of both nodes B and node C. If all three nodes are all included in the data,

even though node B and node C are correlated, Granger causality can identify that node B
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Figure 3.1: Granger causality can identify confounders (Case 1) but cannot identify hidden
confounders (Case 2).

and C do not have a causal relationship. However, in Case 2, when the confounder is not

included in the observational data, Granger causality cannot discover the hidden confounding

node, A. As a result, Granger causality may infer an inaccurate causal relationship between

nodes B and C. Each of the components will be introduced in the following sections.

While Granger causality is a potential method for causal discovery, it depends highly on

the selection of a multivariate autoregressive function. In traditional Granger causality

methods, the multivariate autoregressive function is typically a linear model that cannot

capture nonlinear interactions between entities. Furthermore, Granger causality requires

running the autoregressive function multiple times to determine the marginal predictability

when including and excluding different variables, which is complicated and time-consuming.

To resolve all of these issues, we propose to build an end-to-end neural network model.

The Granger causality inference problem can be formulated as the following optimization

problem:



GC = arg min
G

(
T∑

t=S

|Xt+1 − gW ∗(G,X[t−S:t])|+ λR(G))

where W ∗(G) = arg min
W

T∑
t=S

|Xt+1 − gW (G,X[t−S:t])|

(3.3)

where g is the neural network model parameterized with W . R is the regularization term

on the causal graph, which enforces fewer edges in the graph. A concrete solution for g is

introduced in the following sections.

The autoregressive function g takes the time series data and causal graph as input. When

g only considers one-hop neighbors in G, the conditional log-likelihood given the embedding

of nodes for predicting the graph signal LL(X−,j|ei,j) is equal to LL(X−,−|ei,j) because edge

ei,j can only affect the prediction for node j. As a result, optimizing (3.3) guarantees that

each edge ei,j in G indicates the Granger causality from node i to node j.

There are two terms in the outer optimization. The first term optimizes for the best au-

toregressive function G, which depends on the causal graph G. The second term λR(G)

penalizes the number of edges in the graph. As a result, if the edge does not contribute

to the first term’s prediction, the edge will be removed in the outer optimization problem.

According to the analysis above, the problem in 3.3 is a bi-level optimization problem.

3.3 Proposed Approach

3.3.1 ST-CGI Framework

The bi-level optimization problem in equation (3.3) is expensive to solve. For every causal

relationship i → j, i 6= j, we need to build a restricted model and an unrestricted model.



Therefore, the computational complexity is at least O(n2). The causal graph we are trying

to learn is a relatively stable relationship
[
X(t−S):t

] G−→ Xt+1. According to Norbert Wiener,

whose work Granger cauaslity work built upon, “if a time series X causes a time series Y,

then past values of X should contain information that help predict Y above and beyond the

information contained in past values of Y alone”. That inspired us to decouple the bi-level

optimization problem as a multi-goal optimization problem that can be solved iteratively.

The causal graph could be approximated with the relationship
[
X(t−S):t

] G′
−→ Xt. Instead

of optimizing on the causal graph directly, we propose to optimize the weight of a GNN

that generates the causal graph. This approximation can be represented as a single-layer

optimization problem in the following equation (3.4):

arg min
Θ,W

(
T∑

t=S

|Xt+1 − g(W,G∗, X[t−S:t])|+ λR(G∗
t ))

G∗
t = CGI(Θ, X[t−S:t])

(3.4)

where CGI is the causal graph estimator parameterized with Θ, and R is the L1 regulariza-

tion of the causal graph.

We propose to solve the causal inference and the autoregressive tasks simultaneously in a

single end-to-end framework. Both the causal graph and the prediction for the next times-

tamp are inferred from the input data. The prediction for the next timestamp is dependent

on the inferred causal graph. According to this requirement, we propose a framework, shown

in Figure (3.2), with three modules trained jointly, namely a time series encoder, e, a causal

graph estimator, and a causal graph-based autoregressive module.

The time series encoder e learns the high-dimensional representations of the multivariate

input time series data. As shown in equation (3.5), the input data from P nodes X ∈ RP×D×S

are transformed into an embedding representation h ∈ RP×R, where D is the input dimension
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Figure 3.2: ST-CGI framework: The left module is the TCN-based time series encoder. The
middle module is the deep graph neural network-based causal graph estimator. The right
module is the single layer GCN for traffic forecasting. The traffic forecasting is based on
both the traffic data embedding from the left module and the inferred causal graph from the
middle module.

and R is the hidden dimension.

ht−S:t = e(Xt−S:t) (3.5)

As shown in equation (3.6), the causal graph estimator f learns the affinity matrix of the

causal graph A ∈ RP×P from the embedding.

At−S,t = f(ht−S:t) (3.6)

Given the causal graph, the autoregressive model g tries to approximate the underlying

linear/nonlinear mapping from historical traffic to future traffic.

X̂t+1 = g(At−S,t, Xt−S:t) (3.7)

The model’s overall formulation can be written as equation (3.8).



X̂t+1 =Fθ(Xt−S:t)

=g(f(e(Xt−S:t)), Xt−S:t)

(3.8)

Given a long period of historical time series data and the problem formulation, we optimize

the function in equation (3.9)

f, g, e = arg min
f,g,e
L(f, g, e,Xtrain)

where L(f, g, e,Xtrain) =

1

ST

S∑
s=1

T∑
t=S

(Xt+1,s − g(f(e(Xt−S:t)), Xt−S:t))

(3.9)

3.3.2 Causal Convolution for Time Series Encoding

The left module in Figure 3.2 demonstrates the structure of the time series encoder. Given

raw multivariate time series data with lag S, the first step is to encode the time series into

unified embeddings. The embedding should be a condensed vector that contains information

about the temporal trends, temporal dependency, and temporal delays of the time series.

The embedding must retain as much information as possible about the causal relationships

between nodes.

Instead of using RNN-based units (e.g., LSTM, GRU), we opt to use dilated causal con-

volution network as our temporal convolution network (TCN) for encoding the time series

data[69]. Causal convolution networks with dilation enable an exponentially expanded re-

ceptive field as the layer depth grows.

As shown in equation 3.10, gated dilated causal convolution [34] is utilized on every layer of

the module. Because the model can become very deep when the input time series data is



long, skip connections [31] are also used for each layer of convolutions. This way, the residual

functions can be more easily learned during the optimization.

h = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x) (3.10)

Here, W represents the trainable parameter, k is the layer index, f and g refer to the filter

and gate, ∗ stands for the convolution operator, � signifies element-wise multiplication, and

σ denotes a sigmoid function.

3.3.3 Causal Graph Estimator

After the time series on each location/node has been encoded as embeddings, we assume the

embeddings contain essential information about the dynamics of the time series. The next

step is to infer the causal relationship between the embeddings. As the causal relationship

lies in a discrete space, GNN models are suitable for inferring the causal graph. GNNs have

been shown to capture the relational connectivity between nodes [39].

It is natural to assume that the causal graph is related to a transportation road network

in the spatial environment. For example, locations in closer proximity to one another have

a higher chance of impacting one another. Different from the NRI model [39], we applied

GNN models on the existing network structure rather than the complete graph.

There are several benefits of starting from an existing graph. First, the computational costs

can be greatly reduced. Second, the GNN model converges faster. By stacking k GNN

layers, the GNN model’s receptive field is k-hops over neighbors in the existing graph, which

is sufficient for inferring most of the causal relationships. In other words, the formula in (3.6)

can be changed to At−S,t = f(A′, ht−S:t) where A′ is the affinity matrix of the existing graph



and f is a GNN model. Given the traffic flow embeddings h from the time series encoder in

Eq. (3.10), the GNN model computes the following node to edge (v → e) and edge to node

(e→ v) message passing operations:

[]input : h(0)
v = h (3.11)

v → e : h(m)′

e = σ(W (m)
e


h
(m)
v R

h
(m)
v S.

h
(m−1)
e

+ b(m)
e ) (3.12)

e→ v : h(m)′

v = σ(W (m)
v

h(m)
e RT

h
(m−1)
v

+ b(m)
v ) (3.13)

output : A = fout(h
(n)
e ) (3.14)

where h
(m)
v is the m-th layer node embedding, h(m)

e is the m-th layer edge embedding, fout is

the read-out function that transforms the last layer of the edge embeddings into the affinity

matrix of the causal graph. R and S are the receiver and sender matrices of edges (detailed

in the Appendix)

The middle module in Figure 3.2 demonstrates the structure of the causal graph estimator.

The process of passing messages from nodes to edges and from edges to nodes can be iterated

multiple times, thereby expanding the receptive field of the graph neural network.



3.3.4 Causal Graph Based Autoregressive Model

After the causal graph is inferred, we apply only one layer of GCN on the temporal em-

beddings of the input. The reason for this is that we focus on only inferring direct Granger

causal relations rather than indirect causal relations. Using a single-layer GCN in the autore-

gressive stage enforces the causal graph estimator to learn a Granger causal graph. Given

the traffic embeddings from the time series encoder and the affinity matrix inferred from the

causal graph estimator, the final forecasting step

Xt+1 = σ(AhW ) (3.15)

where h is the embedding representation of nodes learned from Eq. (3.5), and W is the

parameter to optimize in this step.

Relationship with Other Models

Our proposed method is totally different from those who only used pre-defined graph struc-

ture (e.g., road networks, distance-based graphs, similarity graphs) for modeling the spa-

tial dependency. Such methods include DCRNN[45], GEML [73], TGC-LSTM [15], ST-

MGCN[22], STG2Seq[4]. The existing or pre-defined graph structures are helpful for learn-

ing the spatial dependency. However, it is inevitable that such graphs are noisy or miss

certain information for different applications.

The most similar methods to our work are those that try to learn/optimize a graph structure

for modeling the spatial dependency. Such methods include ASTGCN [26], AGCRN [3],

GMAN [93], Graph WaveNet [78], and SLCNN [92]. Compared with these studies, our

work has several unique features. Firstly, our framework is based on the Granger causality



theory, which formulates the causality relationship, while the others depend on correlation

relationships that are difficult to interpret. Secondly, the causal relationship we learn in

the ST-CGI framework is directed, while most of the other methods regard the spatial

dependency from a to b and from b to a are the same. Thirdly, ST-CGI decouples the spatial

dependency modeling and the traffic data autoregressive task, which makes the model easy

to interpret.

3.4 Experiments and Results

In this section, we introduce the experiment settings, performance comparison, and inter-

pretability illustration.

Datasets

We assess the performance of ST-CGI on two publicly available traffic network datasets:

METR-LA and PEMS-BAY. METR-LA encompasses four months of traffic speed statistics

obtained from 207 sensors located on the highways of Los Angeles County. PEMS-BAY

consists of six months of traffic speed information collected from 325 sensors in the Bay area.

The data undergo the same preprocessing steps as outlined in [78]. Specifically, the raw

time series data are aggregated into five-minute windows, followed by Z-score normalization.

The datasets are then partitioned chronologically, with 70% allocated for training, 10% for

validation, and 20% for testing.

Baseline Methods

SLCNN is compared with a traditional method, Auto-Regressive Integrated Moving Average

(ARIMA), and the state-of-the-art methods including DCRNN[45], STGCN[89], SLCNN[92],

and Graph Wavenet (GWN)[78].



Experiment Settings

In the time series encoder, we adopt a sequence of dilation factors (1, 2, 1, 2, 1, 2, 1, 2),

a configuration akin to [78]. Furthermore, a dropout with a probability of 0.3 is employed

on the outputs of the time series encoder. For the causal graph estimator, We apply a

sequence of v → e, e → v, v → e, e → v, v → e message passing GNN operations. The read-

out function fout in equation (3.11) is set to be two dense layers. The initial graph is the

same distance-based graph used in [45, 78]. We train our model using Adam optimization

algorithm with an initial learning rate of 0.001.

Performance Comparison

Following the same settings used by DCRNN, GWN, and SLCNN, the forecasting tasks are

set in three levels, including 15 minutes, 30 minutes, and 1 hour ahead of forecasting. Table

3.1 and Table 3.2 show the comparison of different approaches for short term (15 minutes)

traffic forecasting on both datasets. Table 3.3 and Table 3.4 show the comparison of different

approaches for long term (30/60 minutes) traffic forecasting on both datasets. All methods

undergo evaluation using three standard metrics in traffic forecasting tasks: Mean Absolute

Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error

(MAPE). The ensuing observations are as follows.

(1) For short term (15 minutes) traffic prediction, our proposed ST-CGI method achieves

overall the best performance among all the methods.

(2) For long term (30/60 minutes) traffic prediction, GWN and SLCNN have very competitive

performance. On METR-LA data, ST-CGI performs better than GWN but fails to beat

SLCNN. On PEMS-BAY data, ST-CGI performs better than SLCNN but fails to beat GWN.

The performance difference between ST-CGI and the best performed models is minor.

It is noteworthy that ARIMA is the only interpretable method among the baseline methods,



Table 3.1: Performance comparison for 15 minutes traffic prediction on the METR-LA
dataset

Model METR-LA (15 min)
MAE RMSE MAPE

ARIMA 3.99 8.21 9.6%
DCRNN 2.77 5.38 7.3%
STGCN 2.87 5.54 7.4%
SLCNN 2.53 5.18 6.7%
GWN 2.69 5.15 6.9%

ST-CGI 2.60 5.14 6.7%

Table 3.2: Performance comparison for 15 minutes traffic prediction on the PeMS-BAY
dataset

Model PeMS-BAY (15 min)
MAE RMSE MAPE

ARIMA 1.62 3.30 3.5%
DCRNN 1.38 2.95 2.9%
STGCN 1.46 3.01 2.9%
SLCNN 1.44 2.90 3.0%
GWN 1.30 2.74 2.7%

SG-CGI 1.29 2.69 2.7%

as ARIMA can be considered as a linear method. All of the rest baseline methods lack a the-

oretical foundation for interpretation. Our proposed ST-CGI method not only outperforms

the only interpretable method but also performs better or on par with the non-interpretable

deep neural network methods.

Interpretability Investigation

The theoretical foundations in causal inference enable ST-CGI great power in interpretability.

After the model is trained, the first two modules in the framework can estimate the causal

graph of given data. Causal graphs are directed graphs where an edge from node i to node

j indicates the Granger causal relationship from i to j. In the traffic forecasting task, an

edge with a high weight from traffic sensor i to traffic sensor j means that the traffic flow



Table 3.3: Performance comparison for 30/60 minutes traffic prediction on the METR-LA
dataset

Model METR-LA (30/60 min)
MAE RMSE MAPE

ARIMA 5.15/6.90 10.45/13.23 12.7%/17.4%
DCRNN 3.15/3.60 6.45/7.60 8.8%/10.5%
STGCN 3.48/4.45 6.84/8.41 9.4%/11.8%
SLCNN 2.88/3.30 6.15/7.20 8.0%/9.7%
GWN 3.07/3.53 6.22/7.37 8.4%/10.0%

ST-CGI 3.01/3.44 6.19/7.28 8.3%/9.8%

Table 3.4: Performance comparison for 30/60 minutes traffic prediction on the PeMS-BAY
dataset

Model PeMS-BAY (30/60 min)
MAE RMSE MAPE

ARIMA 2.33/3.38 4.76/6.50 5.4%/8.3%
DCRNN 1.74/2.07 3.97/4.74 3.9%/4.9%
STGCN 2.00/2.67 4.31/5.73 4.1%/5.4%
SLCNN 1.72/2.03 3.81/4.53 3.9%/4.8%
GWN 1.63/1.95 3.70/4.52 3.7%/4.6%

SG-CGI 1.68/2.01 3.77/4.65 3.8%/4.8%



at location j is heavily affected by the traffic flow at location i.

Figure 3.3 shows a causal graph inferred by ST-CGI on the METR-LA dataset. Despite that

the directed edges are difficult to spot due to a large number of nodes, we can still get some

information from the Figure. The first observation is that there are some “hubs” with large

numbers of outgoing edges. This means that the traffic flow in this area is mainly influenced

by a small number of locations.

One important observation is that the Granger causal relationship between two adjacent

locations is usually not strong, which appears counterintuitive. According to the inferred

causal graphs, a distant hub may have a greater impact on traffic flow in one location

than the closest traffic sensor on the same road. It makes sense because the nature of

Granger causality is to eliminate the indirect causes which have no incremental benefit on

the predictions. In a real-world scenario, the traffic flow 15 minutes later near one traffic

sensor should come from locations that are further than its closest traffic sensors.

3.5 Discussion

In this study, we propose a novel interpretable model (ST-CGI) for traffic prediction tasks

based on Granger causality. Specifically, we formulate the traffic prediction task a bi-level

optimization task with a causal inference module and an autoregressive module, where the

latter module depends on the former module. The model does not only make predictions

of the traffic flow but also provides evidence of the predictions which are based on. Exper-

iments on two real-world datasets show that ST-CGI achieves state-of-the-art results and

has advantages in making shorter-term predictions. The interpretability and visualization

function of ST-CGI is highly desired by domain experts and decision-makers.



Figure 3.3: Visualization of an inferred causal graph on the METR-LA dataset.



Chapter 4

Bi-level Optimization in Implicit

Graph Neural Networks

4.1 Introduction

Graph-structured data is prevalent in real-world scenarios. In order to model and glean

insights from such data, graph neural networks (GNNs) were introduced. These networks

aim to generate meaningful representations for nodes by simultaneously incorporating in-

formation from both the graph topology (edge attributes) and node attributes. Only until

recent years, the node-edge co-evolution (NEC) problem setting has attracted growing in-

terest proposed which involves not only node representation but also edge representation

learning [23, 28, 29]. This NEC problem is more general than the regular node representa-

tion learning task because it can not only be reduced to the later one but also handle more

complicated tasks such as deep graph translation [27] and relational inference [39].

Despite the problem setting, a common challenge of GNNs is the lack of ability to capture

long-range dependencies. Normally, one layer of any GNN can only capture the dependencies

with immediate neighbors from any given node. Stacking multiple layers GNNs can extend

the receptive field of GNNs but with a risk of having the so called oversmoothing issue.

Besides, stacking too many layers of GNNs also require excessive computational and storage

cost since more trainable weights are introduced and computational graph becomes deeper.

44



Recently, several works have been proposed to overcome the long-range dependency learning

challenge in graph data with implicit layers. Implicit GNNs (IGNN) [25] learns node repre-

sentations by solving an equilibrium equation (DEQ) w.r.t. node attributes. EIGNN solve

the problem in the same way but with a different optimization algorithm [47]. However,

these works are restricted to the vanilla GNN message passing function. It is non-trivial to

make any changes to their message passing function while keeping the characteristic of the

implicit layer. Specifically, the NEC problem cannot be solved with existing implicit layers

GNNs because the edge representations need to be modeled explicitly.

Motivated by the existing implicit layer GNNs, we propose our NEC-DGT∞ framework with

node-edge co-evolution message passing for solving the multi-attributed graph translation

problem.

The contribution of this work are summarized as follows:

• To capture long-range dependencies, we propose a novel and generic node-edge co-

evolution deep equilibrium model with infinite number of layers of both node-edge and

edge-node message passing.

• We derive the well-posedness condition for the node-edge co-evolution message passing

to guarantee an unique fixed-point solution can be found.

• We take advantage of the implicit function theorem (IFT) and develop an efficient

optimization algorithm for the node-edge co-evolution deep equilibrium model without

needing to do layer-by-layer backpropagation.

• We conduct extensive experiments to validate the effectiveness and efficiency of the

proposed model. The results show that NEC-DGT∞ can effectively capture long-range

dependencies and outperform the state-of-the-art GNN models on both synthetic and



real-world datasets.

4.2 Problem Formulation

4.2.1 Multi-attributed Graph Translation

Table 4.1: Important notations and descriptions

Notations Descriptions
G(V0, E0, E0, F0)Input graph with node set V0,

edge set E0, edge attributes ten-
sor E0 and node attributes ma-
trix F0

G(V ′, E ′, E ′, F ′) Target graph with node set V ′,
edge set E ′, edge attributes ten-
sor E ′ and node attributes ma-
trix F ′

C Contextual information vector
|V| Number of nodes
|E| Number of edges
B Node-edge incidence matrix
Hv node embedding, Hv ∈ Rp×|V|

He edge embedding, He ∈ Rq×|E|

Wve weight matrix for the node to
edge propagation

Wev weight matrix for the edge to
node propagation

( )|·| element-wise absolute value of a
matrix or vector

A multi-attributed graph is formally defined as G = (V , E), where V is a set comprising |V|

nodes, and E represents the edges. The node attributes tensor, denoted as F ∈ RD×|V|, is

characterized by the dimension D of the node attributes. Additionally, the edge attributes

tensor, denoted as E ∈ RK×|E|, is defined with K as the dimension of edge attributes.



The task of translating a multi-attributed graph is framed as the learning of a mapping

from an input graph, denoted as G0, to a target graph, denoted as GT . This mapping is

represented as T : G0(V0, E0, E0, F0;C)→ GT (V ′, E ′, E ′, F ′).

To train the deep neural network for generating the target graph G(E ′, F ′) conditioned on

the input graph G(E0, F0) and contextual information C, we aim to minimize the following

loss function:

LT = L(T (G(E0, F0), C), G(E ′, F ′)) (4.1)

4.2.2 IGNN on Ordinary Graphs

Implicit GNNs (IGNN) [25] are graph neural network (GNN) models that learn node rep-

resentations by solving an equilibrium equation (DEQ) with reference to node attributes.

Different from a regular GNN layer, an IGNN layer is defined in terms of satisfying a joint

condition, i.e., condition for equilibrium, of the input and output. In other words, an IGNN

layer generates the outputs only when the message passing function converges to the unique

fixed point. The IGNN on ordinary graphs can be defined as:

Ŷ = fΘ(X
t)

X t+1 = ϕ(WX tA+ bΩ(F0))

subject to

X t = X t+1

(4.2)

here fΘ is the readout function for the fixed point solution X t, X t ∈ Rp×|V| is the node

embedding at the t-th iteration of message passing. W is trainable weights, A is the adjacency

matrix, bΩ is some affine transformation parameterized by Ω, ϕ is an activation function.



IGNN can be seen as a recurrent neural network on graph with a constraint that a fixed

point solution X t = X t+1 must be found. Once the condition X t = X t+1 is satisfied, the

output embedding in further iterations will still equal with X t because all the other variables

in the model remain the same. However, the fixed-point solution for the equilibrium equation

(4.2) may not exist for arbitrary input and weights. Hence, the concept of well-posedness

becomes relevant. This concept was initially introduced in [18] for implicit models and in

[25] for standard graph neural networks.

Definition 4.1 (Well-posedness for IGNN). The tuple (W,A) of the weight matrix W ∈

Rp×p and the adjacency matrix A ∈ R|V|×|V| is said to be well-posed for ϕ if for any B ∈ Rp×|V|,

the solution X ∈ Rp×|V| of the following equation

X = ϕ(WXA+B) (4.3)

exists and is unique.

Existing work proposed efficient algorithms for optimizing the model in Eq. (4.2) while

keeping the well-posedness [25, 47]. However, these optimization methods are dependant on

the simple message passing function X t+1 = ϕ(WX tA+ bΩ(F0)) which only consists simple

node to node propagation. It is non-trivial to change or extend the message passing function.

4.3 Proposed Approach

We now start by describing the proposed NEC-DGT∞ framework which can infinite-depth

node-edge co-evolution. Inspired by the IGNN on ordinary graph, the infinite-depth model

for the multi-attributed graph translation problem can be defined as:



F ′ = gΘe(H
t
e), E

′ = fΘv(H
t
v)

H t+1
e , H t+1

v = T (H t
e, H

t
v, F0, E0)

subject to

H t
e = H t+1

e and H t
v = H t+1

v

(4.4)

here the function T is applied to both the node and edge embeddings recurrently until it

converges to a fixed point. In this way, the message passing procedure is repeated for infinite

number of times thus important long range nodes-to-edges, nodes-to-nodes, edges-to-nodes,

and edges-to-edges dependencies can be captured. In contrast, in traditional GNNs, only

the information of T -hops can be captured when there are T layers of GNNs. The number T

in most GNNs is normally small to avoid the the infamous over-smoothing issues in GNNs.

We will discuss how our model can avoid over-smoothing issues in later sections.

Node-edge Co-evolution Message Passing

For the message passing function T in Eq. (4.4) to handle the multi-attributed graph

translation problem, it needs to capture important interactions among nodes and edges.

Existing work considers four types of interactions in the multi-attributed graph translation

problem, including nodes-to-edges interaction, nodes-to-nodes interaction, edges-to-nodes

interaction, and edges-to-edges interaction [27]. Due to the nature of recurrent models,

we decouple function T as only two basic paths including the node-to-edge propagation

path and the edge-to-node propagation path. The nodes-to-edges interaction and edges-

to-nodes interaction can be directly inferred by these two basic propagation paths. Since

the message passing procedure is applied iteratively, the nodes-to-nodes interaction can be

inferred by stacking one layer of node-to-edge propagation path and one layer of edge-to-

node propagation path. Similarly, the edges-to-edges interaction can be inferred by stacking



one layer of edge-to-node propagation path and one layer of node-to-edge propagation path.

The two propagation paths are defined in the following equations.

Node-to-edge: He = T1(Hv, B) = ϕ(WveHvB)

Edge-to-node Hv = T2(He, B) = ϕ(WevHeB
T )

(4.5)

Please note that during the node/edge message passing procedures, the node embeddings

always remain the same: Hv ∈ Rp×|V|, while edge embeddings also remain the same He ∈

Rq×|E|. To map from the node/edge feature spaces F ∈ RD×|V|/E ∈ RK×|E| to the node/edge

embedding spaces Hv ∈ Rp×|V| / He ∈ Rq×|E|, we add a function bΩ which can capture all

four types of interactions for one time. If we explicitly seek node embedding fixed points,

the final message passing function is defined as :

Hv = Tv(Hv, B)

= ϕ(Wevϕ(WveHvB)BT + bΩ(E0, F0))

He = Te(Hv, B) = ϕ(WveHvB)

(4.6)

Once the fixed-point for node embeddings is found as is shown in Eq. (4.6), the edge embed-

dings is also automatically found because of the nature of fixed-point functions. Assuming

the fixed-point solution for the node embedding is H∗
v , then the edge embedding in the next

layer is Te(H∗
v , B). As the node embeddings have reached the fixed point, the node embed-

ding in the next layer will still be H∗
v , thus the next of the next edge embedding will still be

Te(H∗
v , B).

Alternatively, if we seek edge embedding fixed points first, the function bΩ will be defined to

output features in the space of Rq×|E|. These two solutions are equivalent.

Sufficient Well-posedness Condition for NEC-DGT∞



For the NEC-DGT∞ in Eq. (4.6) model to function as we expect it to, i.e., yeild a fixed

point solution within finite iterations, it is essential to derive a distinct internal state Hv

for any input U . To guarantee both the existence and uniqueness of the solution to Eq.

(4.6), we introduce the concept of well-posedness for equilibrium equations in the context of

multi-attributed graph translation problems.

Definition 4.2 (Well-posedness for NEC-DGT∞). The tuple (Wve,Wev, B) is considered

well-posed for ϕ if, for any b ∈ Rm×n, the solution Hv ∈ Rp×|V| of the following equation

Hv = ϕ(Wevϕ(WveHvB)BT + b) (4.7)

exists and is unique.

Next, we establish the adequate condition for ensuring the well-posedness, relying on the

introduced node-edge co-evolution message passing. As per Definition 4.2, this condition

pertains to the interplay among three variables: Wve, Wev, and B.

Theorem 4.3 (PF sufficient condition for well-posedness on Eq. (4.6). Suppose ϕ is an

activation map that is component-wise non-expansive (CONE). In that case, for any such

ϕ, the tuple (Wve,Wev, B) is considered well-posed if λpf ((B ⊗ Wev)
|·|(BT ⊗ Wve)

|·|) < 1.

Furthermore, the solution Hv for equation (4.6) can be iteratively obtained as stated in

equation (4.6).

Proof.

Hv = ϕ(Wevϕ(WveHvB)BT + bΩ(E0, F0)) (4.8)

vectorize both sides:



vec(Hv) = ϕ(vec(Wevϕ(WveHvB)BT ) + vec(b))

= ϕ((B ⊗Wev)vec(ϕ(WveHv))) + vec(b))
(4.9)

as ϕ is a CONE activation map:

vec(H t+1
v −H t

v)
|·| = (ϕ((B ⊗Wev)vec(ϕ(WveH

t
vS))) + vec(B))

− ϕ((B ⊗Wev)vec(ϕ(WveH
t−1
v B))) + vec(B)))|·|

≤ ((B ⊗Wev)vec(ϕ(WveH
t
vB))− (B ⊗Wev)vec(ϕ(WveH

t−1
v B)))|·|

≤ (B ⊗Wev)
|·|(vec(ϕ(WveH

t
vB))− vec(ϕ(WveH

t−1
v B)))|·|

≤ (B ⊗Wev)
|·|(vec(WveH

t
vB)− vec(WveH

t−1
v B))|·|

= (B ⊗Wev)
|·|(vec(Wve(H

t
v −H t−1

v )B))|·|

= (B ⊗Wev)
|·|((BT ⊗Wve)vec((H t

v −H t−1
v )))|·|

≤ (B ⊗Wev)
|·|(BT ⊗Wve)

|·| vec(H t
v −H t−1

v )|·|

(4.10)

Eq. (4.6) has a unique solution if λpf ((B ⊗Wev)
|·|(BT ⊗Wve)

|·|) < 1

λpf ((B ⊗Wev)
|·|(BT ⊗Wve)

|·|) = λpf ((BBT )⊗ (W
|·|
evW

|·|
ve)) = λpf (BBT )λpf (W

|·|
evW

|·|
ve) < 1

While the condition λpf (BBT )λpf (W
|·|
evW

|·|
ve) < 1 in Theorem 4.3 guarantees that the well-

posedness can be achieved, calculating the PF eigenvalue is very costly. To avoid costly

spectral decomposition process, we enforce the following more strict condition ‖W |·|
evW

|·|
ve‖∞ <

λpf (BBT )−1.



λ(|W |) = inf
S
||SWS−1||∞ : S = diag(S), s > 0 (4.11)

λpf (W
|·|
evW

|·|
ve) = inf

S
||SW |·|

evW
|·|
veS

−1||∞ : S = diag(S), s > 0 (4.12)

If W |·|
evW

|·|
ve has a distinct PF eigenvalue, the problem (4.12) has a positive optimal scaling

factor s > 0, which is a PF eigenvector of W |·|
evW

|·|
ve. And we can design the equivalent IGNN

with ‖W ′|·|
ev W

′|·|
ve ‖∞ < λpf (BBT )−1 by rescaling:

f̃Θ(·) = fΘ(S
−1 ·), |W ′|·|

ev W
′|·|
ve = SW |·|

evW
|·|
veS

−1, b̃Ω(·) = SbΩ(·),

where S = diag(s).

Training of NEC-DGT∞

After deriving the sufficient condition for well-posedness of NEC-DGT∞, now we can rewrite

the loss function as:

min
Θv ,Θe,Wev ,Wve,Ω

L1(F
′, gΘe(Hv)) + L2(E

′, fΘe(He))

Hv = ϕ(Wevϕ(WveHvB)BT + bΩ(E0, F0)),

He = ϕ(WveHvB)

subject to:

λpf (BBT )λpf (W
|·|
evW

|·|
ve) < 1

(4.13)

This optimization problem with constraints can be solved by projected gradient descent(PGD),

where the gradient is computed using an implicit differentiation scheme. In each optimiza-

tion step, the PGD approach involves moving in the direction of the negative gradient and



subsequently projecting onto the feasible set. The projection itself is also an optimization

problem.

Projection

The projection operator can be expressed as the following optimization problem.

{W+
ev,W

+
ve} = arg min

λpf (W
|·|
evW

|·|
ve )<κ

||Wve −W+
ve||2F + ||Wev −W+

ev||2F

κ = 1/λpf (BBT )

(4.14)

we enforce the stricter condition ||W |·|
evW

|·|
ve||∞ < κ

The projection operator now becomes a child optimization problem in Eq. 4.15.

minimize ||X − A||2F + ||Y − B||2F

subject to ||X |·|Y |·|||∞ ≤ κ

(4.15)

As the constraint in Eq. (4.15) is about X |·|, each dimension in X and A will always be of the

same sign. If one dimension in X has the opposite sign with the corresponding dimension

in A, the opposite of that dimension will also meet the same constraint but yields a smaller

loss. Similarly, each dimension in Y and B will always be of the same sign. For simplicity,

we can first minimize ||X |·| − A|·|||2F + ||Y |·| − B|·|||2F . After the optimal X ′ = X |·| and

Y ′ = Y |·| are found, the actual X and Y can be simply calculated by X = sign(A) � X ′

and Y = sign(B)�Y ′. With this trick, the problem in Eq. 4.15 has the following simplified

version assuming all positive X, Y , A, and B:

minimize ||X − A||2F + ||Y − B||2F

subject to XY = C, ||C||∞ ≤ κ

(4.16)



The optimization problem in Eq. (4.16) can be solved by alternating direction method of

multipliers (ADMM) [11]. ADMM solves convex optimization problems by breaking them

into multiple simpler ones and solving each of them iteratively. According to ADMM, we

first define augmented Lagrangian, for a parameter ρ > 0,

Lρ(X,Y,C, λ) = ||X − A||2F + ||Y − B||2F

+ 〈λ,XY − C〉F + (ρ/2)||XY − C||2F
(4.17)

ADMM consists of the iterations

Xk+1 = arg min
X

(||X − A||2F + 〈λ,XY − C〉+ (ρ/2)||XY − C||2F )

Y k+1 = arg min
Y

(||Y − B||2F + 〈λ,XY − C〉+ (ρ/2)||XY − C||2F )

Ck+1 = arg min
||C||∞≤κ

(〈λ,XY − C〉F + ||XY − C||2F )

λk+1 = λk + ρ(XY − C)

(4.18)

For X:

∂||X − A||2F + 〈λ,XY − C〉F + (ρ/2)||XY − C||2F
∂X

= 0

2(X − A) + λY T + ρ(XY − C)Y T = 0

2X − 2A+ λY T + ρXY Y T − ρCY T = 0

X(2I + ρY Y T ) = 2A− λY T + ρCY T

X = (2A− λY T + ρCY T )(2I + ρY Y T )−1

(4.19)

For Y :



∂||Y − B||2F + 〈λ,XY − C〉F + (ρ/2)||XY − C||2F
∂Y

= 0

2(Y − B) +XTλ+ ρXT (XY − C) = 0

2Y − 2B +XTλ+ ρXTXY − ρXTC = 0

(2I + ρXTX)Y = 2B −XTλ+ ρXTC

Y = (2I + ρXTX)−1(2B −XTλ+ ρXTC)

(4.20)

For C:

The optimization is separable across the rows of C. Each sub-problem involves projecting

onto an L1-ball, and efficient methods are available for such projections.

Denote optimal primal variables by X∗ and Y ∗, and the optimal dual variable by λ∗. The

primal feasibility is measured by primal residual:

rk+1 = ||Xk+1Y k+1 − Ck+1||F (4.21)

The dual residual can be defined as:

sk+1 = ρXk+1(Y k − Y k+1)Y kT (4.22)

Algorithm 2 summarizes the ADMM optimization iteration.

Gradient Descent based on Implicit Function Theorem

After the projection, we calculate the gradients of loss w.r.t weights in the equilibrium model

by utilizing the implicit function theorem.



Algorithm 2: Parameters optimization based on ADMM
Input: Weight metrics A and B, parameter κ
Output: Solution X and Y
Initialize ρ = 1, C, λ,;
Choose εpri > 0 , εdual > 0;
repeat

Update X by equation (4.19);
Update Y by equation (4.20);
Update C by infinity norm;
Update λ by λk+1 = λk + ρ(XY − C);
Calculate the primal residual by equation (4.21) ;
Calculate the dual residual by equation (4.22) ;
if r > 10s then

ρ← 2ρ ;
else if 10r < s then

ρ← ρ/2 ;
else

ρ← ρ ;
end

until r < εpri, s < εdual;

Hv = ϕ(Wevϕ(WveHvB)BT + bΩ(E0, F0)) (4.23)

From the chain rule, it is easy to obtain ∇HvL∞ for the internal state X. In addition, we

can write the gradient w.r.t scalar q ∈ Wev as follows:

∇qL = 〈∂Z
∂q

,∇ZL〉, (4.24)

where Z = WveHvB assuming fixed Hv.

Unlike Hv that is implicitly defined, Z is a closed evaluation of Z = WveHvB assuming Hv

doesn’t change depending on Z.

To circumvent the need for matrix derivatives, we once again employ the vectorized repre-



sentation vec(·) for matrices. The vectorization of a matrix Hv ∈ Bp×|V|, denoted as vec(Hv),

is achieved by concatenating the columns of Hv into a single column vector with dimensions

p|V|. For brevity, we use −→Hv := vec(Hv) as a shorthand notation for vectorization.

With vectorization, we have:

−→
Hv = ϕ((B ⊗Wev)ϕ((B

T ⊗Wve)
−→
Hv) +

−→
B ) (4.25)

similarly, now we change the definition of Z

−→
Z = ((B ⊗Wev)ϕ((B

T ⊗Wve)
−→
Hv) +

−→
B (4.26)

According to Lemma 4.4, we have

∂
−→
Hv

∂
−→
Z

=
∂ϕ((B ⊗Wev)ϕ((B

T ⊗Wve)
−→
Hv) +

−→
B )

∂
−→
Z

+
∂ϕ((B ⊗Wev)ϕ((B

T ⊗Wve)
−→
Hv) +

−→
B )

∂
−→
Hv

∂
−→
Hv

∂
−→
Z

(4.27)

here

∂ϕ((B ⊗Wev)ϕ((B
T ⊗Wve)

−→
Hv) +

−→
B )

∂
−→
Hv

=
∂ϕ(
−→
Z )

∂
−→
Z

∂((B ⊗Wev)ϕ((B
T ⊗Wve)

−→
Hv) +

−→
B )

∂
−→
Hv

=D̃1(B ⊗Wev)
T (BT ⊗Wve)

T D̃2

(4.28)

where



D̃1 =
∂ϕ(
−→
Z )

∂
−→
Z

D̃2 =
∂ϕ((BT ⊗Wve)

−→
Hv)

∂(BT ⊗Wve)
−→
Hv

(4.29)

∇−→
Z
L = (

∂
−→
Hv

∂
−→
Z

)T∇−→
Hv
L (4.30)

Plugging Eq. (4.27) to (4.30), we arrive at the following equilibrium equation

∇−→
Z
L = D̃1(B ⊗Wev)

T (BT ⊗Wve)
T D̃2∇−→

Z
L+ D̃1∇−→

Hv
L (4.31)

or in the devectorized form:

∇ZL = D1 � (W T
ev(D2 � (W T

ve∇ZLBT ))R +∇HvL) (4.32)

here the ∇HvL can be easily obtained through modern autograd frameworks so ∇ZL can be

calculated in the fixed-point function in Eq. 4.32.

After ∇ZL is calculated, it is easy to infer the derivative of the loss w.r.t. Wev

∇WevL = 〈 ∂Z

∂Wev

,∇ZL〉 = ∇ZLR(ϕ(WveHvB))T (4.33)

For calculating ∇WveL, it requires calculating matrix to matrix derivatives so we use the the

vectorized representations again.



∇−−→
Wve
L = 〈 ∂

−→
Z

∂
−−→
Wve

,∇−→
Z
L〉 = 〈∂

−→
Z

∂
−→
ϕ

∂
−→
ϕ

∂
−−→
Wve

,∇−→
Z
L〉

= 〈(R⊗Wev)
∂
−→
ϕ

∂
−−→
Wve

,∇−→
Z
L〉 = 〈(R⊗Wev)

∂
−→
ϕ

∂
−−−−−→
WveHvB

∂
−−−−−→
WveHvB

∂
−−→
Wve

,∇−→
Z
L〉

= ∇−→
Z
L((R⊗Wev)ϕ

′(
−−−−−→
WveHvB)((BTHT

v )⊗ I))

(4.34)

where I is a q × q identity matrix.

Thus

∇WveL = HvB((BT∇ZLWev)� ϕ′(WveHvB)) (4.35)

Lemma 4.4. Using Implicit Function Theorem. The function W 7→ H is defined implicitly

by H = f(H,W ).

Then, H ′(W ) = ∂f
∂H

H ′(W ) + ∂f
∂W

4.4 Experiments and Results

In this section, we present the evaluation results over the proposed NEC-DGT∞ model. We

first introduce the experimental setup, followed by our experimental results and analysis.

Datasets

We conduct experiments on publicly available multi-attributed graph translation datasets

including four synthetic datasets and four real-world datasets.

Synthetic datasets: Four synthetic datasets were generated using distinct random graph

generators and varying translation rules. In the initial three datasets (labeled Syn-I, Syn-II,

and Syn-III), the structures of the input graphs were formed using the Erdős-Rényi (ER)



model [19] with different numbers of nodes (20, 40, and 60) and parameters. The target

graph’s structure is defined as the 2-hop graph of the input graph, signifying that each edge

in the target graph corresponds to 2-hop reachability in the input graph. Similarly, the

structures of the input graph in the forth dataset (named as Syn-IV) were created by the

Barabási-Albert (BA) model [6] with 20 nodes. The structure of the target graph in Syn-IV

is the 3-hop graph of the input graph where each edge in the target graph refers to the 3-hop

reachability in the graph. The node attributes in the input graphs are the node degrees.

The node attributes in the target graphs are calculated as a predefined function of the node

attributes in the input graphs. For all four datasets, the edge attribute is a binary variable

denoting whether the edge exists or not. 50% data are used for training, 40% are used for

validation, and 10% are used for testing.

Malware confinement dataset: Three malware datasets for IoT devices are used for eval-

uating the performance on malware confinement prediction tasks [16]. In all three datasets,

the nodes in the input graph represent IoT devices within the system, with the node at-

tribute being a binary value indicating whether the device is compromised or not. The edge

attributes between two nodes are defined as the physical distance between two devices. The

target graphs represent the graphs with updated node and edge attributes after after the

malware confinement [60].

Molecule reaction dataset: This dataset was collected by Lowe [48] from USPTO

granted patents for chemical reaction extraction studies [48] and was used for deep graph

translation evaluations [27]. The input graphs represent the molecule of the reactants in

organic chemistry, while the target graphs are the products of the chemical reaction. The

node attributes

Comparison methods



To evaluate the capability of our proposed method, we compare it with two baseline methods,

namely, NEC-DGT and IGNN. NEC-DGT is a node-edge co-evolution GNN model but with

two blocks/layers. IGNN is a DEQ model for node embedding message passing only. In

addition, We compare our proposed method with two categories of state-of-the-art methods

: 1) graph structure learning (GSL) methods, and 2) node classification/regression methods.

Link attribute prediction / GSL methods. GT-GAN is a newly developed generative

adversarial network designed for learning graph topology [29]. GraphRNN is a deep autore-

gressive model based on LSTM that can approximate any distribution of graphs with minimal

assumptions about their structure. [87], GraphVAE is a variational autoencoder-based graph

generation method [62].

Node classification/regression methods: IN is a versatile graph neural network (GNN)

framework designed for learning representations at the node, edge, and graph levels [8].

DCRNN is a comprehensive approach that captures both spatial and temporal dependen-

cies through diffusion convolution [44]. STGCN constructs ST-Conv blocks with spatial

convolution layers and residual connection [89].

Evaluation metrics

The graph translation problem is a multi-objective machine learning problem. While node

attributes and edge attributes are used as input at the same time, the node prediction and

edge prediction are evaluated separately. For different datasets, the target attributes, for

both nodes and edges, can be binary values or continuous values. We use MSE, R2, Pearson’s

r and Spearman’s r as metrics. For binary values, we use accuracy as the metric.

Performance

1) Metric-based evaluation for synthetic datasets: All the results are shown in table 4.2.

It can be seen that the proposed model outperform all comparison methods on both the



node and edge attributes prediction. Specifically, in terms of node attribute prediction, the

methods that consider both node and edge messaging perform (NR-DGT, NEC-DGT, NEC-

DGT∞) significantly better than the methods that only do node-to-node message passing

(IN, DCRNN, STGCN). With the help of the DEQ architecture, NEC-DGT∞ performs even

better than NEC-DGT. It is worth to note that on the Syn-IV dataset for BA graphs, the

MSE has been decreased one order of magnitude compared with the second best performed

method. In terms of edge attribute prediction, the proposed NEC-DGT∞ also win by a large

margin. Notably, for Syn-III, the highest accuracy that the other methods can achieve was

only 65.8% while NEC-DGT∞ reached a 95.6% accuracy with a 45% improvement. Also

notably, the edge prediction accuracy on Syn-IV has been improved to almost 100%.

2) Evaluation of the learned translation mapping for synthetic data:

To illustrate whether the inherent mapping mechanism for both node and edge attributes in

the graph translation problem is learnt correctly by NEC-DET∞, we visualize the ground-

truth mapping and plot the learnt distribution by NEC-DET∞ for all the four synthetic

datasets. The ground-truth mapping is drawn according to the pre-defined functions of

generating the datasets as described in section 4.4. Figure 4.1 shows groundtruth line in

green and predicted values in red dots. As is shown in Figure 4.1, the predicted values are

located closely around the groundtruth.

3) Metric-based Evaluation for realworld datasets

Performance metrics for the malware detection task is shown in Table 4.3. The edge at-

tributes are continuous values and thus are evaluated by E-MSE, E-R2, and E-P. The node

attributes are evaluated by E-Acc. NEC-DGT∞ achieves the overall best performance. In

terms of edge attributes prediction, NEC-DGT∞ outperform all the comparison methods.

For node attributes prediction, NEC-DGT∞ performs the best on the first two datasets.



(a) (b)

(c) (d)

Figure 4.1: Visualizations between predicted node attributes and the ground truth relation-
ship for samples from four synthetic graphs. (a) Syn-I (b) Syn-II (c) Syn-III (d) Syn-IV



On Malware III, NEC-DGT∞ gets a slightly lower accuracy than GT-GAN but can have

a much lower E-MSE. In summary, the node-edge message passing methods (NEC-DGT

and NEC-DGT∞) can handle node and edge prediction at the same time better than the

rest methods. By introducing the infinite-depth node-edge message passing, NEC-DGT∞

consistently performs better than its finite layer counterpart (i.e., NEC-DGT)

4.5 Discussion

This study focuses on a new problem, end-to-end attributed graph transformation. To

achieve this, we propose a novel NEC∞ method consisting of a graph deep equilibrium

model which translates an initial graph to a target graph with different node and edge

attributes. To jointly tackle complicated node-edge dynamics, the infinite-depth node-edge

co-evolution message passing is proposed. We also proposed an efficient implicit theorem-

based optimization algorithm to avoid heavy computation and memory overhead. To the

best of our knowledge, NEC∞ is the first work of its kind that is capable of incorporating

both node and edge dynamics within an equilibrium architecture. Extensive experiments

have been conducted on both synthetic and real-world datasets. Experiment results have

shown that our NEC∞ can approximate the underlying ground-truth translation rules, even

those with iterative graph-wide operations, and it significantly outperforms existing methods

and baselines.



Table 4.2: Assessment of Generated Target Graphs for Synthetic Dataset (N for node at-
tributes, E for edge attributes, P for Pearson correlation, SP for Spearman correlation, and
Acc for accuracy)

Dataset Method N-MSE N-
R2

N-P N-Sp Method E-
Acc

Syn-I

IN 5.97 0.06 0.48 0.44 GraphRNN 0.6212
DCRNN 51.36 0.12 0.44 0.45 GraphVAE 0.6591
STGCN 15.44 0.19 0.42 0.56 GT-GAN 0.7039
NR-DGT 2.13 0.87 0.90 0.89 NR-DGT 0.7017
NEC-DGT 1.98 0.76 0.93 0.91 NEC-DGT 0.7129
NEC-DGT∞ 1.018 0.931 0.965 0.959 NEC-DGT∞ 0.9445

Syn-II

IN 1.36 0.85 0.77 0.87 GraphRNN 0.5621
DCRNN 71.07 0.11 0.39 0.37 GraphVAE 0.4639
STGCN 33.11 0.21 0.15 0.15 GT-GAN 0.7005
NR-DGT 1.43 0.91 0.94 0.97 NR-DGT 0.7016
NEC-DGT 1.91 0.93 0.97 0.97 NEC-DGT 0.7203
NEC-DGT∞ 1.203 0.963 0.982 0.983 NEC-DGT∞ 0.9691

Syn-III

IN 35.46 0.31 0.59 0.56 GraphRNN 0.4528
DCRNN 263.23 0.09 0.41 0.39 GraphVAE 0.3702
STGCN 43.34 0.22 0.48 0.47 GT-GAN 0.5770
NR-DGT 5.90 0.90 0.94 0.92 NR-DGT 0.6259
NEC-DGT 4.56 0.93 0.97 0.96 NEC-DGT 0.6588
NEC-DGT∞ 3.322 0.953 0.976 0.974 NEC-DGT∞ 0.9559

Syn-IV

IN 4.63 0.10 0.53 0.51 GraphRNN 0.5172
DCRNN 63.03 0.12 0.22 0.16 GraphVAE 0.3001
STGCN 6.52 0.08 0.11 0.10 GT-GAN 0.8052
NR-DGT 4.49 0.12 0.55 0.54 NR-DGT 0.6704
NEC-DGT 1.86 0.73 0.93 0.89 NEC-DGT 0.8437
NEC-DGT∞ 0.183 0.972 0.986 0.985 NEC-DGT∞ 0.9988



Table 4.3: Assessment of Generated Target Graphs for Malware Dataset (N for node at-
tributes, E for edge attributes, P for Pearson correlation, SP for Spearman correlation, and
Acc for accuracy).

Malware-I
Method E-

Acc
E-MSE E-R2 E-P Method N-

Acc
GraphRNN 0.6107 1831.43 0.52 0.00 IN 0.8786
GraphVAE 0.5064 2453.61 0.00 0.04 DCRNN 0.8786
GT-GAN 0.6300 1718.02 0.42 0.11 STGCN 0.9232
NR-DGT 0.9107 668.57 0.82 0.91 NR-DGT 0.9108
NEC-DGT 0.9218 239.79 0.78 0.91 NEC-DGT 0.9295
NEC-DGT∞ 0.9384 195.72 0.78 0.92 NEC-DGT∞ 0.9347

Malware-II
Method E-

Acc
E-MSE E-R2 E-P Method N-

Acc
GraphRNN 0.7054 1950.46 0.44 0.29 IN 0.8828
GraphVAE 0.6060 2410.57 0.73 0.16 DCRNN 0.8790
GT-GAN 0.9033 462.73 0.13 0.81 STGCN 0.9330
NR-DGT 0.9117 448.48 0.68 0.83 NR-DGT 0.8853
NEC-DGT 0.9380 244.40 0.81 0.91 NEC-DGT 0.9340
NEC-DGT∞ 0.9417 233.66 0.81 0.92 NEC-DGT∞ 0.9487

Malware-III
Method E-

Acc
E-MSE E-R2 E-P Method N-

Acc
GraphRNN 0.8397 1775.58 0.16 0.23 IN 0.8738
GraphVAE 0.8119 2109.64 0.39 0.32 DCRNN 0.8738
GT-GAN 0.9453 550.30 0.63 0.80 STGCN 0.9375
NR-DGT 0.9543 341.10 0.76 0.88 NR-DGT 0.8773
NEC-DGT 0.9604 273.67 0.81 0.90 NEC-DGT 0.9002
NEC-DGT∞ 0.9783 231.99 0.83 0.92 NEC-DGT∞ 0.92875



Chapter 5

Bi-level Optimization in Neural

Architecture Search for Echo-State

Networks

5.1 Introduction

Graphs are commonly used as universal representations of real-world things, including so-

cial networks, brain functional connections, and molecular topology. Real-world networks

generally exhibit patterns in their dynamics, which may be classed as “dynamics on graphs”

and “dynamics of graphs”. The former stresses the time-evolving patterns of the entities’

activity, which can be proven explicitly through the observable node attributes, whereas the

latter emphasizes the underlying change in the topological structure of the network. Both

forms of dynamics appear in real-world graphs, and it is tremendously advantageous to un-

derstand their linkage and transformation. In social networks, for instance, it is crucial to

investigate how the node-level behaviors might affect time-evolving connectivities [21]. In

neuroscience, it is essential to examine how the co-activation of many neurons increases their

physical nerve connections [50]. In recent years, a substantial amount of work and knowl-

edge has been devoted to ”dynamics graphs,” a mix of ”dynamics on graphs” and ”dynamics

of graphs.” Dynamic graph embedding methods, for instance, compute dynamic node em-

68



bedding by aggregating messages from nodes’ neighborhoods, which requires the input of

both node signals (i.e., dynamics on graphs) and graph topology (i.e., dynamics of graphs)

[53, 59, 65, 96]. In practice, however, it is typically quite difficult to directly measure all the

edges to immediately perceive the entire graph. Instead, it is considerably more frequent and

economical to deduce the underlying network structure from the node signals. Therefore,

we propose the task that transfers “dynamics on graphs” to “dynamics of graphs” (in short,

“on-to-of” task) to map the two individual spaces.

Existing on-to-of efforts can be divided into two distinct categories. The first class of ap-

proaches discretizes continuous node signals before implementing message passing on a fully

connected [53, 85], resulting in a severe loss of information. The second category encodes full

time series directly into their embeddings and then calculates the correlation between these

embeddings using standard metrics such as cosine similarity [23, 32, 39, 68]. However, such

metrics are usually not flexible and powerful, and thus cannot adapt to more complicated

on-to-of mappings.

This study focuses on the on-to-of task, which cannot be effectively addressed by existing

solutions due to the following challenges: (1) Difficulty in jointly extracting features

from node dynamics while learning the dynamic relationships in a graph. The

challenge necessitates that transformation patterns be considered in both time and graph

dimensions. Moreover, these two dimensions are not independent, necessitating the need

for a framework that can facilitate the combined evolution of node and edge dynamics. (2)

Absence of an effective and scalable framework for graph dynamics encoding

over a continuous long time duration with a high sampling rate. The inference of

dynamic graph topology necessitates fine-grained, long-term knowledge on graph dynamics.

Existing efforts for dynamic network embedding and representation learning are unable to

efficiently manage extended time series of node attribute data. (3) Dilemma between



learnability and efficiency of models. Modeling the complex mapping between node and

edge dynamics demands models with a high capacity for learning. Compared to optimizing a

model fitted to specific data, optimizing a highly flexible, highly learnable model is typically

time-consuming.

To address the above challenges, we present a novel framework based on echo-state network

(ESN) and neural architecture search (NAS). Specifically, a deep echo-state network is pro-

posed to efficiently encode the continuous time series of node attributes into dynamic edge

embeddings. The architecture of the ESN is automatically tuned by NAS in a self-supervised

manner. The application of the ESN makes the framework extremely efficient and scalable

when dealing with continuous node signals. The NAS module enables the framework to be

adaptive to varying data with minimum priors and ensures good results. The contributions

of this study are as follows:

(1) Design a novel generic framework for mapping between “dynamics on

graphs” and “dynamics of graphs”. A generic framework is proposed for learning

the mapping from the continuous-time node attributes to relational graph topology in

an end-to-end manner.

(2) Propose an adaptive deep echo-state network for encoding node dynam-

ics toward dynamic edge embedding. The proposed deep echo-state network-

based encoder overcomes the inefficiency of BPTT for long time series data.

(3) Design the first neural architecture search method for echo-state net-

works. The search space of the echo-state network is defined as the binary connectivity

of the reservoirs in an echo-state network. The optimization of the architecture is for-

mulated as a bi-level optimization problem which can be solved by gradient-based

algorithms.



(4) Conduct extensive experiments for performance and efficiency evalua-

tions. The proposed method was evaluated on both synthetic and real-world appli-

cation data. The results demonstrate that the proposed approach runs significantly

more efficiently and exhibits better performance than the baseline methods.

5.2 Problem Formulation

In this section, basic concepts and problem definitions are introduced.

Definition 5.2.1 (Dynamics ON Graphs). In a graph with V nodes, the dynamics on graph

are defined as the multivariate time series sensed continuously on all the nodes denoted as

S = {S(1), S(2), · · · , S(V )}, where S(i) is the node signal for node i. S(i) can be defined

as a sequence of time series segments S(i) = {S(i)
1 , S

(i)
2 , · · · , S(i)

m }, where each segment is

multivariate time series. For convenience, we also denote S = {S1, S2, · · · , Sm} for m time

series segments, where Sk = {S(1)
k , S

(2)
k , ..., S

(V )
k }. S

(i)
k can be further defined as discrete time

series with length l: S
(i)
k = {s(i)k,1, s

(i)
k,2, ..., s

(i)
k,l}

Definition 5.2.2 (Dynamics OF Graphs). The dynamics of graphs G = {G1, G2, · · · , Gm}

is an ordered sequence of distinct weighted graphs on the set of nodes V , with each snapshot

graph Gk(V,Ek,Ak), where each edge set at the k-th time series segment is denoted as

Ek ⊆ V × V . Each graph Gk corresponds to a weighted adjacency matrix Ak ∈ RV×V .

Ak,i,j > 0 denotes there exists an edge ek,i,j ∈ Ek from node vi ∈ V to vj ∈ V , and Ak,i,j = 0,

otherwise. The ordered sequence of adjacency matrix can also represent the dynamics of a

graph A = {A1,A2, · · · ,Am}

Definition 5.2.3 (The on-to-of task). Given the dynamics on graphs S = {S1, S2, · · · , Sm}

for m time segments on all nodes, we assume that there exist ground truth underlying
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Figure 5.1: Adaptive deep echo-state framework for the on-to-of task. 1: Deep-echo-state
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dynamics of graphs A = {A1,A2, · · · ,Am} that represent the time-evolving relationship

among these nodes. The on-to-of task is to infer a function to map between S and A:

F : S → A.

The on-to-of task is different from most of the dynamic graph studies because only the

continuous node signals are used as input and the evolving graph topology is the output.

In most dynamic graph studies, the dynamic graph topology must be used as well in a

graph neural network [53, 85]. The on-to-of task is also different from the more commonly

studied GSL problem [97] where the evolving graph topology (i.e., dynamics of graphs) is

optimized towards optimizing a downstream task. For instance, in [23], the downstream task

is the auto-regression with a rational behind is: accurately recovered interactions (i.e., graph

topology) permit accurate node trajectory forecasting (i.e., the downstream task). In the

on-to-of task, though, recovering the dynamic graph topology is the task itself.



5.3 Proposed Approach

To solve the on-to-of task and address the challenges, we propose a new adaptive deep

echo-state framework for graph dynamics transformation in this section.

5.3.1 Adaptive Deep Echo-state Framework

The adaptive deep echo-state framework (AD-ESN) mainly includes three modules as demon-

strated in Fig. 5.1. To solve the challenge of lacking scalability, we extend echo state network

(ESNs) and propose a deep ESN-based graph dynamics encoder (module 1 in Fig. 5.1) to

replace mainstream recurrent models because ESNs are much more efficient and scalable

than RNNs. The details of using ESNs as time series data encoders are explained in Section

5.3.2. In order to improve the performance and make the model adaptive, we propose a novel

idea of using a neural architecture search technique on ESNs (module 3 in Fig. 5.1). This

solution not only solves the challenge of lacking model assumptions for the on-to-of task but

also remedies the shortage of vanilla ESNs that the performance is poor. The details are

discussed in Section 5.3.4. ESN and NAS together enable us to learn meaningful embeddings

of arbitrary node signals in a graph. We use an attention-based dynamic graph topology

decoder (module 2 in Fig. 5.1) for mapping the node embeddings to edge labels as detailed

in Section 5.3.3. While NAS is a powerful technique, it can also be extremely slow, which

does not match our original intention of proposing an efficient on-to-of task solver. We solve

this issue by proposing a surrogate loss and using a gradient-based optimization algorithm

which is much faster to solve as detailed in Section 5.3.5.
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5.3.2 Deep-echo-state Graph Dynamics Encoder

We propose an adaptive deep ESN-based encoder for learning the representation of the

dynamics of graphs. The input dynamics, which can be considered as time series, are non-

linearly embedded into a higher dimensional feature space, where the original problem is

more likely to be solved linearly according to Cover’s Theorem [14]. With proper settings,

the dependencies of our ESN-based graph dynamics encoder on the initial conditions are

progressively lost, and the state of the network asymptotically depends only on the driving

input signal.

Our ESN-based encoder can be considered as a recurrent neural network where all of the

weights are randomized and untrained. As shown in Fig. 5.2, there are input weight, internal

weight, and output weight. On the left side of the figure, each timestamp in the input time

series is considered as an input node. W (in) ∈ RR is the weight that maps each input node

to the internal reservoir neurons. W
(in)
i = 0 means no connection from the input to the i-th



reservoir neuron. Every time a new timestamp S
(i)
k is fed in, the reservoir neurons are affected

by not only the input data but also the current state of all the neurons in the ESN. Similarly,

the output weight W (out) connects the state of the reservoir neurons to the outputs. The

dynamics of the ESN can be represented as rt = σ(Wrt−1+W (in)s
(i)
k,t), where σ is a nonlinear

activation function, rt is the current state of the ESN reservoir at time t, W ∈ RR×R is the

weight among the R reservoir neurons (shown in Fig. 5.2). The non-zero values in W can be

represented as directed edges in the ESN. Different from vanilla ESNs, the non-zero weights

of W (in) and W are formulated as the search space of deep ESN architectures as described

in Section 5.3.4, and are optimized with NAS as detailed in Section 5.3.5. The W (out) in

Fig. 5.2 generates hidden representations of the input such that we can use them for the

following on-to-of task solver.

We denote R as the ESN’s reservoir, and x
(i)
k as the representation of the k-th time series

segment of node i. x
(i)
k can be calculated as the final hidden representation in the ESN that

can be computed recursively as shown in Eq (5.1):

x
(i)
k = W (out)R(S(i)

k )

= W (out)σ((Wr
(i)
k,l−1 +W (in)s

(i)
k,l))

= W (out)σ(Wσ(Wr
(i)
k,l−2 +W (in)s

(i)
k,l−1) +W (in)s

(i)
k,l)

(5.1)

In conclusion, the ESN does not learn the representation of the input time series. It is

directly applied to the sequential input data and maps the input into a high-dimensional

space. While ESN is efficient, tuning its initial state is highly dependant on domain experts’

experiences. It is highly desired if ESNs can be automatically tuned before it’s trained on

the labeled data.



5.3.3 Dynamic Graph Topology Decoder

The proposed attention-based dynamic graph topology decoder aims to infer time-evolving

edge features or connectivities, ensuring that the on-to-of task inference is scalable and

general without bias. Within the k-th time series segment, the dynamics on graphs now are

represented as embeddings Xk = {x(1)
k , x

(2)
k , · · · , x(V )

k } on V nodes. We define the attention

coefficients between node i and node j as the edge label (dynamics of graphs) we try to infer:

ek,i,j = a(x
(i)
k , x

(j)
k ), where a is the attentional mechanism with shared weights. As there

is already a shared learnable linear transformation layer Wout in the ESN before getting

the embeddings, an external linear transformation is omitted before using the attention

mechanism.

To facilitate the comparability of coefficients across various nodes in the dynamic graph, the

attention coefficients are normalized using the softmax function. For example, the attention

mechanism a can be a single head GAT [70] (denoted as g) parameterized with W (G) defined

on a fully connected graph. Now we can express the on-to-of task as:

Ak,i,j = F(W (out),W (G))(S
(i)
k , S

(j)
k )

=
exp(σ(g(W (out)R(S(i)

k )||W (out)R(S(j)
k ))))∑

n∈V exp(σ(g(W (out)R(S(i)
k )||W (out)R(S(n)

k ))))

5.3.4 AD-ESN Search Spaces

As no NAS studies have been proposed for ESNs, we propose ESN architecture search, the

first attempt of using NAS on ESNs for graph dynamics learning. The goal is to automatically

learn the ESN architecture so that it will achieve a good performance in downstream tasks.

The following is the search space that we define for ESNs.



• The connectivity from the input to ESN’s reservoir neurons A(in) ∈ Rd×R where A(in)
i,j =

{0, 1}. A
(in)
i,j = [W

(in)
i,j 6= 0] 1

• The connectivity between ESN’s reservoir neurons A ∈ RR×R where Ai,j = {0, 1}.

Ai,j = [Wi,j 6= 0]

For simplicity we denote A(R) = [A(in), A] as the ESN’s architecture. The choice of activation

functions and the number of reservoir nodes are also hyperparameters in the search space

but can be set according to general rules (will be discussed in Section 5.4).

5.3.5 Deep-echo-state Architecture Optimization

A rigorous optimization loss function for optimizing AD-ESN can be expressed as follows:

A(R) = arg min
A

L(W ∗
1 ,W

∗
2 , A)

L(W1,W2, A) =
∑

0<k<m

∑
i ̸=j

|F(W1,W2,A)(S
(i)
k , S

(j)
k )−Ak,i,j|

where [W ∗
1 ,W

∗
2 ] = arg min

[W1,W2]

L(W1,W2, A)

(5.2)

here F(W1,W2,A) represents the graph topology decoder with a fixed ESN architecture A.

However, the loss in Eq. (5.2) is extremely expensive to solve as it requires doing the bi-level

optimization on the original on-to-of task. One common practice in NAS studies is to propose

a surrogate loss that is much easier to solve. Inspired by self-supervised learning, instead of

optimizing the ESN for the empirical loss in Eq. (5.2), we decouple the ESN-based encoder

and the graph topology decoder, then define a surrogate loss function for the prediction
1Please note that A represents the graph structure of ESNs, while A represents the graph structure of

the target graphs (dynamics of graphs)



performance of the ESN-based encoder. Given the time series data S ′ = {s′1, s′2, · · · , s′m}

sampled from the whole data S, the NAS problem with the surrogate loss is defined in Eq.

(5.3).
A(R) = arg min

A
Ls(W

(pred∗), A)

Ls(W,A) =
∑

0<t<m−1

|R′
W,A(S

′
0:t)− s′t+1)|

W (pred∗) = arg min
W

Ls(W,A(R))

(5.3)

here the previous W (out) is replaced with W (pred). Different from W (out), W (pred) transforms

the ESN reservoir’s internal states into a representation that has the same dimensionality

as the time series data. R′
W,A represents the reservoir with W as output weight and A

as architecture. The rationale behind this surrogate loss is similar with NRI [39]: good

architectures permit accurate forecasting.

To solve the problem in Eq. (5.3) efficiently, we sample ESN graph connections with Gumbel-

Softmax by using the reparameterization trick. Now the problem has been transformed from

the optimization in the discrete space into the optimization in a continuous space and can

be optimized with stochastic gradient descent. To avoid overfitting and improve ESN’s

generalization capability, the time series S ′ in Eq. (5.3) are split into the training set and

validation set.The bi-level optimization can be summarized as in Alg. 5.1.

Algorithm 5.1 (htb). 1: initialize A(R) in continuous space

2: while Early stopping criterion is not met do

3: for e in epoch do

4: for minibatch in training and validation data do

5: //Sample discrete ESN according to A(R)

6: A(R) ∼ Gumbel(0, 1)

7: Initialize W (in) and W according to A(R)



8: // Update the ESN’s predict weights on the training set

9: W = W − ηW∇WLtr(W,A(R))

10: // Update the ESN’s topology parameters A(R) on the validation set

11: A(R) = A(R) − ηA(R)∇A(R)Lval(W,A(R))

12: end for

13: end for

14: end while

For each batch of data, the ESN architecture is sampled according to the continuous A(R)

(lines 6). The ESN’s prediction weight W (pred) can be optimized by regular backpropagation

(lines 9). The architecture parameter A(R) of the Echo State Network (ESN) is optimized

using a straightforward heuristic, where the optimization of the validation loss assumes that

the current W (pred) is equivalent to W (pred′) (lines 11). After the optimization is finished, to

form the discrete topology in the ESN, we retain the edge labels (exist or not) by applying

a threshold λ. More details of the NAS process can be found in Appendix B.

5.3.6 Complexity Analysis

We discuss the time complexity of the AD-ESN framework by comparing it with the tra-

ditional LSTM and BPTT-based method. The time complexity of our ESN-based encoder

module is O(Rl), where R is the number of internal reservoir neurons and l is the length

of the time series. Before our method, the standard way of handling time series data with

recurrent neural networks is BPTT (backpropagation through time), which is O(R2l) [77].

The time complexity of the graph topology decoder can be expressed as O(V 2). This is due

to the necessary pairwise computation of nodes’ hidden representations.

There is also a NAS module in our framework that takes time, while a vanilla RNN model



does not require it. However, the NAS is meant to automate the fine-turning process that

was originally performed by humans, which normally takes a longer time. Furthermore, our

proposed NAS process is independent of the supervised learning process and only runs on

small sampled unlabelled data.

5.4 Experiments

Datasets

The proposed AD-ESN framework and baseline methods are tested on five datasets including

two synthetic and three real-world datasets.

• Syn-Coupled [39]: Physical simulated dataset for phase-coupled oscillators. In this

dataset, each node is an oscillator that is coupled with its neighbors according to a

dynamic graph.

• Syn-Chaotic: Physical simulated chaotic time series data. In this dataset, each node

is defined as a chaotic time series. The ground truth dynamic graphs are defined as

real-time correlation graphs.

• Brain [63] :Real-world brain fMRI data. The dynamic graphs represent the functional

connectivity between brain regions. The node signals represent the BOLD time series

in each of the brain regions.

• Social [20]: Real-world social media dataset. The node signals are forum users’ activ-

ities. The dynamic graphs are users’ accumulated transition graphs.

• Protein [2]: Real-world protein folding data. The node signals contain the amino acids’

3-dimensional dynamic coordinates. The dynamic graphs are the protein’s connectivity



during the folding process.

For Syn-Chaotic, Forum, and Brain datasets, the edges have dynamic weights, such that

the “dynamics of graphs” are represented as affinity matrices. We evaluate the results

with average MAE and RMSE. For Syn-Coupled and Protein datasets, the “dynamics of

graphs” are represented as adjacency matrices. The results are evaluated with accuracy

(Acc) following [39]. We also report the recall (sensitivity) rate as it is important for the

model to have fewer false negatives, i.e., discover the edge if it exists. More detailed data

descriptions can be found in Appendix A.

Experiment Settings

All the models are trained with the ADAM optimization algorithm. For each of the datasets,

the first 80% of the data are used as the training set, and the rest 20% are used as the

testing set. The architecture of the ESN is optimized on 10% of the training data with a

gradient-based NAS algorithm. For AD-ESN, we apply tanh as the nonlinear function, as it

is the most common activation function. As a general rule of thumb, for an input of size d,

to remember τ time points in the past, the number of ESN nodes should be at least d×τ [49].

Now, the search space is only limited by A(R), which controls the connections on the ESN

nodes. This search space is discrete (connected or not at each edge) and has finite 2dR+RR

states. The randomly generated ESN weights are normalized to meet a standard called Echo

State Property (ESP). More implementation details can be found in Appendix B.

To show AD-ESN’s strengths in terms of adaptability and scalability, we compare it with

two variants: LSTM-Att utilizes LSTM as encoder and GAT as decoder. ESN adopts vanilla

ESN as encoder and GAT as decoder. Additionally, we compare AD-ESN with two recent

SOTA approaches for graph inference: NRI [39] uncovers the relation graph by learning a

variational auto-encoder (VAE). dNRI [23] is similar with NRI but encodes the temporal



dependence with LSTM. At last, two simple baselines are also being compared: Pre-step

simply determines the relations between nodes as the previous status in the last segment.

Siamese [52] encodes the time series with LSTM and decode the graph dynamics with a

siamese feed-forward neural network.

Performance and Adaptability Analysis

Dynamic Edge Binary Classification Dynamic Edge Weight Estimation
Datasets Syn-Coupled-1 Syn-Coupled-2 Protein Syn-Chaotic Forum Brain
Metrics Acc Recall Acc Recall Acc Recall RMSE MAE RMSE MAE RMSE MAE
Pre-step 51.2 72.5 47.7 70.3 64.5 68.7 0.036 0.033 0.33 0.067 0.8 0.505
LSTM-Att 51.4 62.5 51.7 49.9 53.3 45.3 0.036 0.033 0.26 0.047 - -
Siamese 66.2 14.6 53.2 11.3 50.0 47.3 0.039 0.035 0.26 0.052 - -
ESN 50.0 48.6 50.4 48.3 50.0 42.4 0.031 0.03 0.49 0.091 0.93 0.562
NRI 94.6 91.5 49.9 33.5 49.9 48.2 0.029 0.026 0.43 0.075 - -
dNRI 94.4 91.4 56 33.7 56.3 62.6 0.029 0.026 0.49 0.088 - -
AD-ESN 92.2 90.9 74.4 83.6 67.8 71.4 0.029 0.026 0.26 0.05 0.67 0.442

Table 5.1: On-to-Of Task Performance Comparison. “-” denotes that the model is not
trainable on our hardware.

Table 5.1 summarizes the results of all the models on all the datasets. We observe that AD-

ESN achieves overall the best performance on all five datasets with different data scales and

underlying priors, which indicates the exceptional adaptability of AD-ESN over the baselines.

Some of the baseline models can perform well on a restricted set of tasks but fall short on

others, which means they are much more sensitive to datasets. For simulated coupled oscil-

lator data, we first test all the methods on a sampled dataset with the same initialization

circumstances as NRI (Syn-Coupled-1) [39], then another dataset with a different configu-

ration (Syn-Coupled-2). It can be seen that NRI and dNRI perform better than AD-ESN

on Syn-Coupled-1, but fails miserably on Syn-Coupled-2 when the hyperparameters are not

fine-tuned. Our proposed AD-ESN architecture, on the other hand, performs slightly worse

than NRI and dNRI on Syn-Coupled-1 but significantly better than all the rest comparison

approaches. Appendix A contains the details of the data generation method. On the re-

maining datasets, our proposed AD-ESN consistently outperforms the other methods. Only



two of the ESN-based algorithms are scalable to be trained on the Brain dataset since the

time-series of nodes are excessively long.

The predicted graphs using AD-ESN are compared to the ground truth graphs from the

Syn-Chaotic dataset in Fig. 5.3. The adaptability of AD-ESN is enabled by the proposed

deep-echo-state graph dynamics encoder which is automatically altered with NAS in a self-

supervised manner.
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Figure 5.3: Visualization of graphs. Darkness of the edges reflects their weights.

Scalability Analysis

Model L D Node # BS GPU Memory
LSTM-Att 500 100 50 128 8893 MB
AD-ESN 500 100 50 128 6425 MB
LSTM-Att 1000 10 50 128 6581 MB
AD-ESN 1000 10 50 128 1647 MB
LSTM-Att 5000 1 50 128 N/A
LSTM-Att 5000 1 50 ↓ 32 7464 MB
AD-ESN 5000 1 50 128 2227 MB

Table 5.2: GPU Usage Test Results.
L: Time Series Length, D: Input dimension, BS: Batch size.
N/A means the GPU memory is not enough for this setting.

The excellent scalability of AD-ESN stems from the fact that the weights of ESNs are ran-
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Figure 5.4: Scalibility Analysis. The ESN encoder makes the framework much more efficient
and scalable.

domized and untrained, which is different from all existing neural network modules. To

better illustrate this feature, we investigate AD-ESN’s scalability by comparing it to its

counterpart using LSTM as encoder, i.e., LSTM-Att.

Table 5.2 shows a comparison of LSTM-Att and AD-ESN models’ GPU RAM usage on syn-

thetic data. The hidden dimensions of both models are the same. The LSTM-Att model

utilizes more RAM than the AD-ESN model when used to process long time series. The ad-

vantage increases when the time series data become longer, because RNN-based models (e.g.,

LSTM, GRU) require memory to store the gradients for each timestamp backpropagation,

whereas ESNs do not.

A training time comparison between models employing the ESN-based encoder and its LSTM-

based counterpart (LSTM-Att) is shown in Fig. 5.4. The training cost of the NAS process is

negligible compared with the actual training time due to the efficient gradient-based bi-level

optimization and the surrogate loss. While the ESN-based encoder is only one component of

the whole framework, the training time of the whole AD-ESN framework is clearly shorter

in all scenarios, especially when the length of time series increases, which coincides with the

time complexity analysis in Section 5.3.6.



5.5 Discussion

This research has focused on solving the generic “dynamics on graphs” to the “dynamics of

graphs” translation tasks without knowing what type of mapping (e.g., causal, correlation,

physical interaction) was employed. To do so, we have proposed a novel ESN-based frame-

work with NAS that can automatically tune its architecture based on the input continuous

node signal data in a self-supervised manner. To the best of knowledge, this is the first

work that combines ESN and NAS. This combination enables the framework to achieve a

compelling trade-off between the efficiency and neural architecture flexibility.

Experiment results attest that our AD-ESN framework can successfully uncover the underly-

ing on-to-of mappings on different types of data. The employment of ESN and NAS has been

proven to be surprisingly effective and makes the framework highly versatile and scalable.

This study opens a new window for more scalable dynamic graph modeling and new ap-

plications with adaptive ESNs. There are many possible future directions to explore, such

as online “dynamics on graphs” to the “dynamics of graphs” translation and unsupervised

“dynamics on graphs” to the “dynamics of graphs” translation.



Chapter 6

Conclusion

This thesis is about formulating and solving bi-level optimization problems in deep learning.

We studied both methodologies and their applications from the lens of bi-level optimization.

In In Chapter 2,

In Chapter 3,

modeling intelligence that can learn to represent and reason about the world. We studied

both representation and reasoning from the lens of graph neural networks. In Part I, we

introduced theoretical frameworks for characterizing the representation power and devel-

oped maximally powerful GNNs. In Part II, we answered what reasoning a neural network

can learn by analyzing how the interplay of network structure and task structure affects the

generalization. In Part III, we studied how neural networks extrapolate, and showed implica-

tions for how neural models can possibly learn the reasoning outside the training distribution.

Then in Part IV, we completed the picture of the theoretical landscape by analyzing and

improving the optimization of GNNs. From a broader viewpoint, we have presented several

theoretical limits of building artificial general intelligence in terms of representation power

and generalization, but also have complemented those with promising directions to explore

in the future. This concludes the thesis.
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Appendix A

Supplementary Material for

Generative Neural Architecture

Search

A.1 A. Theoretical Analysis and Proofs

A.1.1 Expressivity of the Neural DAG generator

Our neural DAG generator is a neural network that transforms random vectors with Gaus-

sian prior into random graphs with an unknown distribution. To theoretically describe the

expressivity of neural DAG generator, a key ingredient is the classic Barron’s Theorem [7],

which gives a Fourier criterion for approximation ability of a function by a neural network

with 1 hidden layer. According to Barron’s theorem, if a certain quantity involving the

Fourier transform is small, the function can be approximated by a neural network with one

hidden layer and a small number of nodes. The similar studies regarding to distributions,

not univariate functions, was less studied until just recently [43].

Lemma 2.2 provides expressively guarantee for neural networks on transforming a Gaussian

distribution to another arbitrary distribution, whereas Proposition A.1 requires proving the

neural network’s ability on transforming a Gaussian vector to neural DAG’s distribution. A
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Barron function in Lemma 2.2 is a function that can be approximated by a neural net with 1

hidden layer. Lemma 2.2 has been proved in [43] which partly explains the expressive power

of MLP as generative models.

Proposition A.1. Our neural DAG network generator can approximate the common graph

generators including ER, BA, and WS used in existing work such as RandWire and NAGO

with asymptotical zero error.

Proof. The distribution of ER, BA, and WS graphs are pre-defined with limited parameters:

• The Erdős–Rényi model has two parameters n and p where n is the number of nodes.

When n is fixed, the degree distribution of an ER graph is P (k) =
(
n−1
k

)
pk(1−p)n−1−k,

where p is the only free parameter.

• The Barabási–Albert model has two parameters n and m where n is the number of

nodes. When n is fixed, the degree distribution of a BA graph is P (k) = k−3, where

m is the only free parameter.

• The Watts–Strogatz model has three parameters n, k, and β, where n is the num-

ber of nodes. When n is fixed, the degree distribution of a WS graph is P (k) ≈∑f(k,K)
n=0

(
K/2
n

)
(1−β)nβK/2−n (βK/2)k−K/2−n

(k−K/2−n)!
e−βK/2, where only two free parameters p and

k can be adjusted.

For each of the above graph generators, the distributions is a Barron function to its free

parameter(s). According to Lemma 1, the neural DAG generator (an MLP) can approximate

ER, BA, and WS graph generators.

Remark A.2. (Expressivity issues with methods not using a generator). DARTS-like

frameworks optimize the local architectures directly in the form of adjacency matrix E ∈

R
n(n−1)

2
×Nop such that they cannot handle the isomorphic graph issue.



Figure A.1: The left two DAGs represent the same architecture on the right side.

Fig. A.1 shows an example of isomorphic graphs of the same neural network architecture.

In DARTS-like frameworks, the goal of the optimization is on the local edge Ei→j. However,

as shown in the figure, the optimal option Ei→j on the edge can vary depending on different

isomorphic graphs of the same architecture.

A.1.2 Continuity of the gNAS Framework

Proposition A.3. Our neural DAG generator is Lipschitz continuous.

Proof. The Lipschitz constant of an affine function f : y = Mx + b where M ∈ Rm×n and

b ∈ Rm is the largest singular value of its associated matrix M .

For any MLP with 1-Lipschitz activation functions (e.g., ReLU, Tanh, Sigmoid), the Lips-

chitz constant becomes

L =
K∏
k=1

||Mk||2 (A.1)

where K is the number of layers in the MLP.

As the neural DAG generator is an MLP, we have proved that it is Lipschitz continuous.

The upper bound of the Lipschitz constant is
∏K

k=1 ||Mk||2



Proposition A.4. Given the training and validation data, the loss function of the neural

DAG-based neural network is Lipschitz continuous with respect to the graph edges.

Proof. Given a neural DAG-based neural network with two nodes, where the number of

potential operations is 2, the output of the continuous-relaxed neural network defined in

Section 4.3 is

f(α) = αf 1
w1
(x) + (1− α)f 2

w2
(A.2)

where f i
wi

is the function of the i-th operation parameterized with wi. α is the weight/prob-

ability of the first operation.

We have

|f(α1)− f(α2)|

=|α1f
1
w1
(x) + (1− α1)f

2
w2
− α2f

1
w1
(x)− (1− α2)f

2
w2
|

=|(α1 − α2)[f
1
w1
(x)− f 2

w2
(x)]|

(A.3)

As all the potential operations are bounded, [f 1
w1
(x) − f 2

w2
(x)] is also bounded. We denote

|f(α1) − f(α2)| ≤ Lout|α1 − α2|. It means that given the training and validation data, the

output of the graph-based neural network is Lipschitz continuous with respect to the graph

edges.

Given a graph with more than two nodes, it can be proven that the output of the graph-based

neural network is still Lipschitz continuous with respect to the graph edges by recursively

merging two edges as one edge in Eq. A.2.

Under the same assumption that there are only two nodes and two potential operations, now



we try to prove there exists a L that satisfies:

|[f(α1)− y∗]2 − [f(α2)− y∗]2| ≤ L|α1 − α2| (A.4)

where y∗ is the ground truth labels.

|[f(α1)− f(α2)][f(α1) + f(α2)− 2y∗]| ≤ L|α1 − α2| (A.5)

As |f(α1)− f(α2)| ≤ Lout|α1 − α2| and |α1 − α2| ∈ [0, 1], L exists.

Similarly, this conclusion can be extended to the situation where the graph has more than

two nodes.

A.2 B. Experiment Settings

Our implementation of the gNAS framework is based on Vega AutoML pipeline[71] with

PyTorch backend1. We use the existing codes for the NAS and evaluation pipelines but

rewrite the codes for the search space definition and search algorithm. Our codes include

but not limited to:

• Search Algorithm

– vega/core/search_algs/ps_differential.py

Some codes for first order differentiable NAS was available in the Vega framework. We

implement second order differentiation for gNAS by referring to codes in [46]. The

1https://github.com/huawei-noah/vega



weights in the neural DAG generator can be optimized with the differentiable NAS

algorithm.

• Search Space

– zeus/modules/operators/cell.py

– zeus/networks/super_network.py

– zeus/networks/pytorch/customs/utils/logical_graph.py

– zeus/networks/pytorch/customs/utils/layers.py

We implement the basic operations and RNAG/HNAG networks in above codes.

A.3 C. Related Work

Graph Structures of Neural Network

[88] proposes a universal graph-based representation of neural network architectures and

found that the performance of neural network architectures is highly correlated with certain

graph characteristics. [17] utilizes graph convolutional network (GCN) to estimate architec-

ture performance, but the search space is not all the possible graphs. These works indicate

the complexity of the graph topology and its close relationship with NAS. RandWire was

proposed to generate random graphs with prescribed network models (e.g., ER, BA, and

WS models), and then transform the graphs into neural network architectures [79]. Later,

[56] proposed a framework named NAGO with a hierarchical graph, where in each layer,

the graph is a random graph, similar to RandWire. Different from RandWire in that NAS

is not utilized, NAGO uses Bayesian optimization (BO) for adjusting the node and edge

distribution on each layer. However, methods like RandWire and NAGO are not able to



model the inner graph topology in details. Compared with RandWire and NAGO, we take a

step further by optimizing a neural network as the network generator, which is more flexible

than the random graph models they use.

Graph Generative Models

Graph generative models have been researched for many years in the domain of mathematics,

physics, and statistics to model the behavior of networks. Traditional random network

models (e.g., Erdős–Rényi (ER) model [19], Barabási–Albert (BA) model [1], and Watts–

Strogatz (WS) model [74]) usually fit well towards the properties that have been covered by

the predefined principles, but not on those have not been covered [54]. By leveraging the

universal approximation properties of neural networks [80], deep graph generative models

can learn and fit arbitrarily complex graph distribution from massive data, without prior

knowledge as in the traditional network models. Various neural networks have been proposed

for graph representation learning including those based on multi-layer perception [62], graph

convolution [40], and graph recurrent nets [87], all of which can be learned by scenarios

such as variational auto-encoders (VAE) [57], GAN [10], and maximal likelihood [87]. In

recent years, few deep graph generative models have started to be applied to NAS such as

in D-VAE [91], arch2vec [82], and CATE [83]. These methods require to learn from the pre-

defined network typologies that are generated beforehand. Instead, in our proposed gNAS

framework, the stochastic neural DAG generator can be trained in end-to-end fashion and

explore the neural architecture without the need for predefined architecture and can avoid

the bias and restrictions from prior knowledge.

NAS Optimization Algorithm

NAS by its nature requires high computational demand because the feedback of its gener-

alization ability is expensive to calculate when the architecture is changed. NASNet uses a



reinforcement learning-based method to spend 2000 GPU days to obtain the best architecture

for CIFAR-10 and ImageNet [98]. Similarly, AmoebaNet-A spends 3150 GPU days using an

evolutionary algorithm (EA) [55]. [38] combine BO and EA, but the search space is limited

by the initial pool of pre-defined architectures. DARTS-like frameworks (e.g., DARTS [46],

P-DARTS [12], PC-DARTS [81], I-DARTS [37], DARTS− [13], MileNAS [30]) speeds up

the NAS process by transforming the discrete neural architecture space into a continuously

differentiable form, and further uses gradient-based optimization techniques to search the

neural architecture. However, the DARTS-like frameworks only search for deterministic local

structures (i.e, the operation on a discrete edge in a DAG) and cannot capture the global

wiring patterns. In our problem formulation, we assume that a graph generator g can encode

global characteristics a class of neural networks, and we search for the optimal weights of

the graph generator such that it can generate good architectures consistently.



Appendix B

Supplementary Material for Neural

Architecture Search for Echo-State

Networks

B.1 A. Datasets

Syn-Chaotic

This synthetic dataset is for verifying if the proposed model can learn a pre-defined mapping

function without any prior knowledge. We assume each node generates a chaotic time series

that exhibits complex nonlinear behavior but with a deterministic property. The synthetic

chaos time series can be generated from the Mackey-Glass function [51].

dx

dt
= β

xτ

1 + xτ
n
− γx, γ, β, n > 0, (B.1)

where xτ represents the value of the variable x at time (t − τ). Depending on the values

of the parameters, this equation displays a range of periodic and chaotic dynamics. For a

commonly used setup where β = 0.2, n = 10, γ = 0.1, the system has a chaotic attractor for

τ > 16.8.
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In the experiment setting, we pre-define a time series to graph mapping (e.g., Cosine similar-

ity) and see if the model can predict the graph connectivity according to the historical time

series. It makes sense because it has been proven that the vanilla ESN can predict the chaotic

time series generated from nonlinear time-delay differential equations (e.g., Mackey-Glass).

In the experiment, we simulate a 5-node chaotic system. In total 10k chaotic time series

data are simulated for each node as the “dynamics on graphs”, with each time series having

500 timestamps.

Syn-Coupled

This synthetic dataset is for verifying if the proposed model can recover the graph structure

from the nodes’ time-series data under the assumption that the graph structure affects

the interactions of time series. Random graphs are firstly generated with a pre-defined

distribution. Each node of the graph generates base signals. The state of a node at a

certain time point is determined by the node’s base signal and the influence of its neighbors.

When the graph is static, the signals on all the nodes will be synchronized. If we change

the randomly generated graph structure every time l, the node signals will also be affected.

Given the time series S = S1, S2, ..., Sn×l on all the nodes during n× l, the experiment is to

testify if the model can recover the graph structures G = {G1, G2, ..., Gn}

The dynamics of the weakly coupled time series which follow the governing equations:

dθi
dt

= ωi +
K

N
sin(θj − θi), i = 1...N, (B.2)

where θi is is the signal on node i. Runge-Kutta method is used for generating the time

series according to (B.2)

We used the same external code[42] base used by NRI[39] for generating both Syn-Coupled-1



and Syn-Coupled-2. There are three initializing parameters for this implementation including

the initial phase Y 0, intrinsic freq W , coupling matrix K. When s is a random sample from

a uniform distribution over [0, 1), the parameter settings are described as following.

• Y 0: All the nodes are set to s∗2∗π in Syn-Coupled-1. The first Y 0 is set to [0, π, 0, 1, 5]

for each nodes in Syn-Coupled-2, then Y 0 is set to the last phase in the last time series

segment for the following time series segments.

• W : W is set to s ∗ 9 + 1 in Syn-Coupled-1. W is set to [28, 19, 11, 9, 2] (the default

values in the repository) in Syn-Coupled-2.

• K: The edges in both datasets follow the Bernoulli distribution p = 0.5.

In the experiment, we simulate a 5-node interacting system of coupled oscillators. In total

10k chaotic time series data are simulated for each node as the “dynamics on graphs”, with

each time series having 100 timestamps.

Brain

As an example application to biological data, we use the resting-state fMRI data from over

1000 subjects released by the Human Connectome Project [63]. The subjects included in

the dataset underwent an in total one hours high-resolution T1-weighted anatomical MRI

scan. The smallest units measured in the raw data were 2× 2× 2 mm voxels. The temporal

resolution was around 0.7s. The brain undergoes an anatomical parcellation, resulting in

68 gyral-based Regions of Interest (ROIs), evenly distributed with 34 cortical ROIs in each

hemisphere. The brain activities were measured with Blood-oxygen-level-dependent imaging

in fMRI for each voxel but are averaged to the 68 ROIs. The averaged BOLD signals

represent the 1-dimensional time series on each ROI. Functional connectivity is defined as

the correlation between the time series of BOLD data from various brain regions.



Forum

As an example application to social media data, we use the healthcare forum data used by

Gao et al. [20]. This dataset was collected from the Breast Cancer Community and covers

an eight-year period. The forum users’ transition behavior patterns in different subforums

are normally due to the changes in their health status and are reflected in their history

activities. The users’ transition behaviors can be modeled as sequences of transition graphs

in which each node represents a subforum. In the experiment, we try to predict the users’

accumulated transition graphs based on their history activity records.

Protein

As an example application to biology data, we use the protein folding data used in [2]. Protein

folding is the natural process through which a protein chain attains its native 3-dimensional

structure, typically a biologically functional conformation, in a rapid and consistent manner.

During the protein folding process, the amino acids’ position keeps changing. When the

distance between two amino acid’s distance is longer than a threshold, they can be viewed

as unconnected. The connectivity of all the amino acids can form a dynamic graph. In the

context of graph learning, this can be viewed as a graph comprising 8 nodes, where each

node has attributes (x, y, z) representing the 3D coordinates of the atom in each amino acid.

This results in 300 temporal graphs with a sequence length of 100.

B.2 B. Implementation Details and Experiment Set-

tings

All experiments were conducted on a single 64-bit server with Nvidia TITAN V GPU.



B.2.1 Deep Echo-State Encoder

After the architecture of the ESN is optimized with NAS, the randomly generated ESN

weights are normalized to meet a standard called Echo State Property (ESP) [35] as shown

in Eq B.3. This is a common practice being used in almost all the ESNs.

∀s = [u(1), u(2), ..., u(n)]

∀x, x′ ∈ RNR initial states

||R̂(s, x)− R̂(s, x′)|| → 0 as n→∞

(B.3)

B.2.2 Dynamic Graph Topological Decoder

We tested message passing graph neural network (MPGNN) like in [39] as well as GAT as

the dynamic graph topological decoder. In the experiment section, we only report the results

with GAT but the results are very close with MPGNN.

The MPGNN module computes the graph adjacency/affinity matrix following the equation:

v → e : h
(1)
i,j = f (1)

e ([h
(1)
i , h

(1)
j ])

e→ v : h
(2)
j = f (2)

v (
∑
i ̸=j

h
(2)
i,j )

v → e : h
(2)
i,j = f (2)

e ([h
(2)
i , h

(2)
j ])

...

output : Ai,j = fout(e
(n)
i,j )

(B.4)

here f are neural networks that map between the edge and node representations. We use

fully-connected networks (MLPs) for the f functions.



Except for GAT and MPGNN, other options (e.g., MLP, RNN) can also be used for cal-

culating pairwise node-to-node relationships in the last step and are compatible with our

framework.

B.2.3 Deep-echo-state Architecture Optimization

As mentioned in Section 3.4, the search space is A(R) = [A(in), A], A(R) ∈ R(d+R)×R where

d is the input dimension and R is the size of the reservoir in ESN. In order to make the

optimization possible with automatic differentiation, we relaxes the categorical edge choices

to a continuous variable A(R) where A
(R)
i,j := [0, 1]. Similar approaches are used in NAS

studies for image classification problems [30, 46]. The NAS stage, we randomly select a node

and use only the first 10% of time series data for NAS. The bi-level optimization of our

NAS formulation is to optimized for making auto-regression with ESN. The intuition is that

the encoder works well and can be used for other downstream tasks if it can make accurate

auto-regression. After the continuous A(R) is optimized, we sample the discrete according to

the lowest threshold λ to meet the ESP as mentioned in Section B.2.1.

We tested different settings for the length of data used for NAS, ranging from 5% up to

100%. On most datasets, longer time series data don’t help improving the encoder when the

ratio reaches a threshold. We chose 10% as a fixed ratio for all the datasets as it’s a sweet

spot for all the datasets considering the performance and search time.
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